Nowadays,lithium-ion capacitors(LICs) have become a type of important electrochemical energy storage devices due to their high power and long cycle life characteristics with fast response time.As one of the essential ...Nowadays,lithium-ion capacitors(LICs) have become a type of important electrochemical energy storage devices due to their high power and long cycle life characteristics with fast response time.As one of the essential components of LICs,the electrolytes not only provide the anions and cations required during charge and discharge processes,but also supply the liquid environment for ions to migrate between anodes and cathodes in LIC cells.It is well accepted that propylene carbonate(PC) cannot be used as a single solvent for Li-ion electrolyte due to the failure to form stable SEI film on graphite surface.In this work,the compatibility of PC-based electrolyte with commercial soft carbon anode and activated carbon cathode has been validated by using the laminated pouch LIC cells.The effects of additives on the electrochemical properties of PC-based LICs have been systematically investigated.Ethylene sulfite(ES) was proved to be an effective additive to promote capacity retention at high C-rate,which is superior to vinylene carbonate and fluoroethylene carbonate.The addition of 5 wt% ES plays an important role in reducing internal resistance,as well as improving electrochemical stability and low-temperature performances.This study is expected to be beneficial to explore robust electrolyte/additive combinations for LICs to reduce the internal resistance and to improve the lowtemperature performances.展开更多
Diffractive lenses(DLs)can realize high-resolution imaging with light weight and compact size.Conventional DLs suffer large chromatic and off-axis aberrations,which significantly limits their practical applications.Al...Diffractive lenses(DLs)can realize high-resolution imaging with light weight and compact size.Conventional DLs suffer large chromatic and off-axis aberrations,which significantly limits their practical applications.Although many achromatic methods have been proposed,most of them are used for designing small aperture DLs,which have low diffraction efficiencies.In the designing of diffractive achromatic lenses,increasing the aperture and improving the diffraction efficiency have become two of the most important design issues.Here,a novel phase-coded diffractive lens(PCDL)for achromatic imaging with a large aperture and high efficiency is proposed and demonstrated experimentally,and it also possesses wide field-of-view(FOV)imaging at the same time.The phase distribution of the conventional phase-type diffractive lens(DL)is coded with a cubic function to expand both the working bandwidth and the FOV of conventional DL.The proposed phase-type DL is fabricated by using the laser direct writing of grey-scale patterns for a PCDL of a diameter of 10 mm,a focal length of 100 mm,and a cubic phase coding parameter of 30π.Experimental results show that the working bandwidth and the FOV of the PCDL respectively reach 50 nm and 16°with over 8%focusing efficiency,which are in significant contrast to the counterparts of conventional DL and in good agreement with the theoretical predictions.This work provides a novel way for implementing the achromatic,wide FOV,and high-efficiency imaging with large aperture DL.展开更多
基金the National Natural Science Foundation of China(Nos.52077207,51822706,51777200 and 51772127)Beijing Natural Science Foundation(No.JQ19012)Dalian National Laboratory for Clean Energy Cooperation Fund,the CAS(No.DNL201912)。
文摘Nowadays,lithium-ion capacitors(LICs) have become a type of important electrochemical energy storage devices due to their high power and long cycle life characteristics with fast response time.As one of the essential components of LICs,the electrolytes not only provide the anions and cations required during charge and discharge processes,but also supply the liquid environment for ions to migrate between anodes and cathodes in LIC cells.It is well accepted that propylene carbonate(PC) cannot be used as a single solvent for Li-ion electrolyte due to the failure to form stable SEI film on graphite surface.In this work,the compatibility of PC-based electrolyte with commercial soft carbon anode and activated carbon cathode has been validated by using the laminated pouch LIC cells.The effects of additives on the electrochemical properties of PC-based LICs have been systematically investigated.Ethylene sulfite(ES) was proved to be an effective additive to promote capacity retention at high C-rate,which is superior to vinylene carbonate and fluoroethylene carbonate.The addition of 5 wt% ES plays an important role in reducing internal resistance,as well as improving electrochemical stability and low-temperature performances.This study is expected to be beneficial to explore robust electrolyte/additive combinations for LICs to reduce the internal resistance and to improve the lowtemperature performances.
基金the National Natural Science Foundation of China(Grant No.61775154)the Natural Science Foundation of the Jiangsu Higher Education Institutions,China(Grant No.18KJB140015)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe Open Research Fund of CAS Key Laboratory of Space Precision Measurement Technology,China(Grant No.SPMT2021001)。
文摘Diffractive lenses(DLs)can realize high-resolution imaging with light weight and compact size.Conventional DLs suffer large chromatic and off-axis aberrations,which significantly limits their practical applications.Although many achromatic methods have been proposed,most of them are used for designing small aperture DLs,which have low diffraction efficiencies.In the designing of diffractive achromatic lenses,increasing the aperture and improving the diffraction efficiency have become two of the most important design issues.Here,a novel phase-coded diffractive lens(PCDL)for achromatic imaging with a large aperture and high efficiency is proposed and demonstrated experimentally,and it also possesses wide field-of-view(FOV)imaging at the same time.The phase distribution of the conventional phase-type diffractive lens(DL)is coded with a cubic function to expand both the working bandwidth and the FOV of conventional DL.The proposed phase-type DL is fabricated by using the laser direct writing of grey-scale patterns for a PCDL of a diameter of 10 mm,a focal length of 100 mm,and a cubic phase coding parameter of 30π.Experimental results show that the working bandwidth and the FOV of the PCDL respectively reach 50 nm and 16°with over 8%focusing efficiency,which are in significant contrast to the counterparts of conventional DL and in good agreement with the theoretical predictions.This work provides a novel way for implementing the achromatic,wide FOV,and high-efficiency imaging with large aperture DL.