As compared to the intuitive process that the electron emits straight to the continuum from its parent ion,there is an alternative route that the electron may transfer to and be trapped by a neighboring ionic core bef...As compared to the intuitive process that the electron emits straight to the continuum from its parent ion,there is an alternative route that the electron may transfer to and be trapped by a neighboring ionic core before the eventual release.Here,we demonstrate that electron tunnelling via the neighboring atomic core is a pronounced process in light-induced tunnelling ionization of molecules by absorbing multiple near-infrared photons.We devised a siteresolved tunnelling experiment using an Ar-Kr+ion as a prototype system to track the electron tunnelling dynamics from the Ar atom towards the neighboring Kr+by monitoring its transverse momentum distribution,which is temporally captured into the resonant excited states of the Ar-Kr+before its eventual releasing.The influence of the Coulomb potential of neighboring ionic cores promises new insights into the understanding and controlling of tunnelling dynamics in complex molecules or environment.展开更多
More than ten years ago,the observation of the low-energy structure in the photoelectron energy spectrum,regarded as an“ionization surprise,”has overthrown our understanding of strong-field physics.However,the simil...More than ten years ago,the observation of the low-energy structure in the photoelectron energy spectrum,regarded as an“ionization surprise,”has overthrown our understanding of strong-field physics.However,the similar low-energy nuclear fragment generation from dissociating molecules upon the photon energy absorption,one of the well-observed phenomena in light-molecule interaction,still lacks an unambiguous mechanism and remains mysterious.Here,we introduce a time-energy-resolved manner using a multicycle near-infrared femtosecond laser pulse to identify the physical origin of the light-induced ultrafast dynamics of molecules.By simultaneously measuring the bond-stretching times and photon numbers involved in the dissociation of H_(2)^(+) driven by a polarization-skewed laser pulse,we reveal that the low-energy protons(below 0.7 eV)are produced via dipole-transitions at large bond lengths.The observed low-energy protons originate from strong-field dissociation of high vibrational states rather than the low ones of H_(2)^(+) cation,which is distinct from the well-accepted bond-softening picture.Further numerical simulation of the time-dependent Schrödinger equation unveils that the electronic states are periodically distorted by the strong laser field,and the energy gap between the field-dressed transient electronic states may favor the one-or three-photon transitions at the internuclear distance larger than 5 a.u.The time-dependent scenario and our time-energy-resolved approach presented here can be extended to other molecules to understand the complex ultrafast dynamics.展开更多
Multiphoton resonant excitation and frustrated tunneling ionization,manifesting the photonic and optical nature of the driving light via direct excitation and electron recapture,respectively,are complementary mechanis...Multiphoton resonant excitation and frustrated tunneling ionization,manifesting the photonic and optical nature of the driving light via direct excitation and electron recapture,respectively,are complementary mechanisms to access Rydberg state excitation(RSE)of atoms and molecules in an intense laser field.However,clear identification and manipulation of their individual contributions in the light-induced RSE process remain experimentally challenging.Here,we bridge this gap by exploring the dissociative and nondissociative RSE of H2 molecules using bicircular two-color laser pulses.Depending on the relative field strength and polarization helicity of the two colors,the RSE probability can be boosted by more than one order of magnitude by exploiting the laser waveform-dependent field effect.The role of the photon effect is readily strengthened with increasing relative strength of the second-harmonic field of the two colors regardless of the polarization helicity.As compared to the nondissociative RSE forming H2,the field effect in producing the dissociative RSE channel of eHt;HT is moderately suppressed,which is primarily accessed via a three-step sequential process separated by molecular bond stretching.Our work paves the way toward a comprehensive understanding of the interplay of the underlying field and photon effects in the strong-field RSE process,as well as facilitating the generation of Rydberg states optimized with tailored characteristics.展开更多
Rabi oscillation is an elementary laser-driven physical process in atoms and artificial atoms from solid-state systems,while it is rarely demonstrated in molecules.Here,we investigate the bond-length-dependent Rabi os...Rabi oscillation is an elementary laser-driven physical process in atoms and artificial atoms from solid-state systems,while it is rarely demonstrated in molecules.Here,we investigate the bond-length-dependent Rabi oscillations with varying Rabi frequencies in strong-laser-field dissociation of H2+.The coupling of the bond stretching and Rabi oscillations makes the nuclei gain different kinetic energies while the electron is alternatively absorbing and emitting photons.The resulting proton kinetic energy spectra show rich structures beyond the prediction of the Floquet theorem and the well-accepted resonant one-photon dissociation pathway.Our study shows that the laser-driven Rabi oscillations accompanied by nuclear motions are essential to understanding the bond-breaking mechanism and provide a time-resolved perspective to manipulate rich dynamics of the strong-laser-field dissociation of molecules.展开更多
This paper studies a distributed formation problem for non‐holonomic mobile robots.Consideration of the leader dynamics of the robots as non‐ideal,that is,subject to dis-turbances/unmodelled variables,is the disting...This paper studies a distributed formation problem for non‐holonomic mobile robots.Consideration of the leader dynamics of the robots as non‐ideal,that is,subject to dis-turbances/unmodelled variables,is the distinguishing feature of this work.The issue is resolved by a distributed combined disturbance‐and‐leader estimator,allowing for the distributed reconstruction of the leader's signals.The estimator needs to detect the leader's information and disturbance.In order to reject such disturbance and achieve the formation asymptotically,the control law incorporates the smooth estimator's estimate of the leader disturbance.Furthermore,the stability of the total distributed formation control algorithm is also examined using the Lyapunov technique.Finally,to show the viability of the pro-posed theoretical results,simulations and actual experiments are carried out.展开更多
We experimentally investigate Coulomb exploded directional double ionization of N2O molecules in elliptically polarized femtosecond laser pulses.The denitrogenation and deoxygenation channels are accessed via various ...We experimentally investigate Coulomb exploded directional double ionization of N2O molecules in elliptically polarized femtosecond laser pulses.The denitrogenation and deoxygenation channels are accessed via various pathways.It leads to distinct asymmetries in directional breaking of the doubly ionized N2O molecules versus the instantaneous laser field vector, which is revealed by tracing the sum-momentum spectra of the ionic fragments as a recoil of the ejected electrons.Our results demonstrate that the accessibility of the Coulomb exploded double ionization channels of N2O molecules are ruled by the detailed potential energy curves, and the directional emission of the fragments are governed by the joint effects of the electron localization-assisted enhanced ionization of the stretched molecules and the profiles of the molecular orbitals.展开更多
An improved constant volume cycle (CVC) model is developed to analyze the nozzle effects on the thrust and specific impulse of pulse detonation rocket engine (PDRE). Theoretically, this model shows that the thrust...An improved constant volume cycle (CVC) model is developed to analyze the nozzle effects on the thrust and specific impulse of pulse detonation rocket engine (PDRE). Theoretically, this model shows that the thrust coefficient/specific impulse of PDRE is a function of the nozzle contraction/expansion ratio and the operating frequency. The relationship between the nozzle contraction ratio and the operation frequency is obtained by introducing the duty ratio, by which the key problem in the theoretical design can be solved. Therefore, the performance of PDRE can be accessed to guide the preliminary shape design of nozzle conveniently and quickly. The higher the operating frequency of PDRE is, the smaller the nozzle contraction ratio should be. Besides, the lower the ambient pressure is, the larger the expansion ratio of the nozzle should be. When the ambient pressure is 1.013 × 105 Pa, the optimal expansion ratio will be less than 2.26. When the ambient pressure is reduced to vacuum, the extremum of the optimal thrust coefficient is 2.236 9, and the extremum of the specific impulse is 321.01 s. The results of the improved model are verified by numerical simulation.展开更多
基金supported by the National Natural Science Foundation of China(Grants Nos.12374260,12241407,12074240,12204135)Hainan Provincial Natural Science Foundation of China(Grant No.122CXTD504)the Fundamental Research Funds for the Central Universities and the Sino-German Center for Research Promotion(SGC,Grant No.M-0031).
文摘As compared to the intuitive process that the electron emits straight to the continuum from its parent ion,there is an alternative route that the electron may transfer to and be trapped by a neighboring ionic core before the eventual release.Here,we demonstrate that electron tunnelling via the neighboring atomic core is a pronounced process in light-induced tunnelling ionization of molecules by absorbing multiple near-infrared photons.We devised a siteresolved tunnelling experiment using an Ar-Kr+ion as a prototype system to track the electron tunnelling dynamics from the Ar atom towards the neighboring Kr+by monitoring its transverse momentum distribution,which is temporally captured into the resonant excited states of the Ar-Kr+before its eventual releasing.The influence of the Coulomb potential of neighboring ionic cores promises new insights into the understanding and controlling of tunnelling dynamics in complex molecules or environment.
基金supported by the National Key R&D Program of China(Grant Nos.2018YFA0306303,2018YFA0404802)the National Natural Science Fund(Grant Nos.11834004,11621404,11925405,91850203)+3 种基金the 111 Project of China(Grant No.B12024)Projects from Shanghai Science and Technology Commission(Grant No.19JC1412200)the Innovation Program of Shanghai Municipal Education Commission(Grant No.2017-01-07-00-02-E00034)S.Pan acknowledges the support from the Academic Innovation Ability Enhancement Program for Excellent Doctoral Students of East China Normal University in 2021(Grant No.40600-30302-515100/141).
文摘More than ten years ago,the observation of the low-energy structure in the photoelectron energy spectrum,regarded as an“ionization surprise,”has overthrown our understanding of strong-field physics.However,the similar low-energy nuclear fragment generation from dissociating molecules upon the photon energy absorption,one of the well-observed phenomena in light-molecule interaction,still lacks an unambiguous mechanism and remains mysterious.Here,we introduce a time-energy-resolved manner using a multicycle near-infrared femtosecond laser pulse to identify the physical origin of the light-induced ultrafast dynamics of molecules.By simultaneously measuring the bond-stretching times and photon numbers involved in the dissociation of H_(2)^(+) driven by a polarization-skewed laser pulse,we reveal that the low-energy protons(below 0.7 eV)are produced via dipole-transitions at large bond lengths.The observed low-energy protons originate from strong-field dissociation of high vibrational states rather than the low ones of H_(2)^(+) cation,which is distinct from the well-accepted bond-softening picture.Further numerical simulation of the time-dependent Schrödinger equation unveils that the electronic states are periodically distorted by the strong laser field,and the energy gap between the field-dressed transient electronic states may favor the one-or three-photon transitions at the internuclear distance larger than 5 a.u.The time-dependent scenario and our time-energy-resolved approach presented here can be extended to other molecules to understand the complex ultrafast dynamics.
基金the National Key R&D Program of China(Grant No.2018YFA0306303)the National Natural Science Foundation of China(Grant Nos.11834004,61690224,92150105,11904103,12241407,and 12227807)the Science and Technology Commission of Shanghai Municipality(Grant No.21ZR1420100).
文摘Multiphoton resonant excitation and frustrated tunneling ionization,manifesting the photonic and optical nature of the driving light via direct excitation and electron recapture,respectively,are complementary mechanisms to access Rydberg state excitation(RSE)of atoms and molecules in an intense laser field.However,clear identification and manipulation of their individual contributions in the light-induced RSE process remain experimentally challenging.Here,we bridge this gap by exploring the dissociative and nondissociative RSE of H2 molecules using bicircular two-color laser pulses.Depending on the relative field strength and polarization helicity of the two colors,the RSE probability can be boosted by more than one order of magnitude by exploiting the laser waveform-dependent field effect.The role of the photon effect is readily strengthened with increasing relative strength of the second-harmonic field of the two colors regardless of the polarization helicity.As compared to the nondissociative RSE forming H2,the field effect in producing the dissociative RSE channel of eHt;HT is moderately suppressed,which is primarily accessed via a three-step sequential process separated by molecular bond stretching.Our work paves the way toward a comprehensive understanding of the interplay of the underlying field and photon effects in the strong-field RSE process,as well as facilitating the generation of Rydberg states optimized with tailored characteristics.
基金This work was supported by the National Key R&D Program of China(Grants Nos.2018YFA0306303 and 2018YFA0404802)the National Natural Science Fund(Grants Nos.11834004,11925405,12241407,12227807 and 91850203)+1 种基金Innovation Program of Shanghai Municipal Education Commission(Grant No.2017-01-07-00-02-E00034)S.P.acknowledges the support from the Academic Innovation Ability Enhancement Program for Excellent Doctoral Students of East China Normal University in 2021(Grant No.40600-30302-515100/141).
文摘Rabi oscillation is an elementary laser-driven physical process in atoms and artificial atoms from solid-state systems,while it is rarely demonstrated in molecules.Here,we investigate the bond-length-dependent Rabi oscillations with varying Rabi frequencies in strong-laser-field dissociation of H2+.The coupling of the bond stretching and Rabi oscillations makes the nuclei gain different kinetic energies while the electron is alternatively absorbing and emitting photons.The resulting proton kinetic energy spectra show rich structures beyond the prediction of the Floquet theorem and the well-accepted resonant one-photon dissociation pathway.Our study shows that the laser-driven Rabi oscillations accompanied by nuclear motions are essential to understanding the bond-breaking mechanism and provide a time-resolved perspective to manipulate rich dynamics of the strong-laser-field dissociation of molecules.
基金The Open Project of Key Laboratory of Industrial Internet of Things&Networked Control,Grant/Award Number:2018FF02Natural Science Foundation of Jiangsu Higher Education Institutions,Grant/Award Number:22KJB510027+1 种基金The Open Research Fund from Guangdong Laboratory of Artificial Intelligence and Digital EconomyNational Natural Science Foundation of China,Grant/Award Numbers:62073088,U1911401。
文摘This paper studies a distributed formation problem for non‐holonomic mobile robots.Consideration of the leader dynamics of the robots as non‐ideal,that is,subject to dis-turbances/unmodelled variables,is the distinguishing feature of this work.The issue is resolved by a distributed combined disturbance‐and‐leader estimator,allowing for the distributed reconstruction of the leader's signals.The estimator needs to detect the leader's information and disturbance.In order to reject such disturbance and achieve the formation asymptotically,the control law incorporates the smooth estimator's estimate of the leader disturbance.Furthermore,the stability of the total distributed formation control algorithm is also examined using the Lyapunov technique.Finally,to show the viability of the pro-posed theoretical results,simulations and actual experiments are carried out.
基金Project supported by the National Key R&D Program of China(Grant No.2018YFA0306303)the National Natural Science Fundation of China(Grant Nos.11425416,11834004,and 11761141004)the 111 Project of China(Grant No.B12024)
文摘We experimentally investigate Coulomb exploded directional double ionization of N2O molecules in elliptically polarized femtosecond laser pulses.The denitrogenation and deoxygenation channels are accessed via various pathways.It leads to distinct asymmetries in directional breaking of the doubly ionized N2O molecules versus the instantaneous laser field vector, which is revealed by tracing the sum-momentum spectra of the ionic fragments as a recoil of the ejected electrons.Our results demonstrate that the accessibility of the Coulomb exploded double ionization channels of N2O molecules are ruled by the detailed potential energy curves, and the directional emission of the fragments are governed by the joint effects of the electron localization-assisted enhanced ionization of the stretched molecules and the profiles of the molecular orbitals.
基金supported by the National Natural Science Foundation of China(No.11472167)
文摘An improved constant volume cycle (CVC) model is developed to analyze the nozzle effects on the thrust and specific impulse of pulse detonation rocket engine (PDRE). Theoretically, this model shows that the thrust coefficient/specific impulse of PDRE is a function of the nozzle contraction/expansion ratio and the operating frequency. The relationship between the nozzle contraction ratio and the operation frequency is obtained by introducing the duty ratio, by which the key problem in the theoretical design can be solved. Therefore, the performance of PDRE can be accessed to guide the preliminary shape design of nozzle conveniently and quickly. The higher the operating frequency of PDRE is, the smaller the nozzle contraction ratio should be. Besides, the lower the ambient pressure is, the larger the expansion ratio of the nozzle should be. When the ambient pressure is 1.013 × 105 Pa, the optimal expansion ratio will be less than 2.26. When the ambient pressure is reduced to vacuum, the extremum of the optimal thrust coefficient is 2.236 9, and the extremum of the specific impulse is 321.01 s. The results of the improved model are verified by numerical simulation.