The hydraulic fracturing is a nonlinear,fluid-solid coupling and transient problem,in most cases it is always time-consuming to simulate this process numerically.In recent years,although many numerical methods were pr...The hydraulic fracturing is a nonlinear,fluid-solid coupling and transient problem,in most cases it is always time-consuming to simulate this process numerically.In recent years,although many numerical methods were proposed to settle this problem,most of them still require a large amount of computer resources.Thus it is a high demand to develop more efficient numerical approaches to achieve the real-time monitoring of the fracture geometry during the hydraulic fracturing treatment.In this study,a reduced order modeling technique namely Proper Generalized Decomposition(PGD),is applied to accelerate the simulations of the transient,non-linear coupled system of hydraulic fracturing problem,to match this extremely tight response time constraint.The separability of the solution in space and time dimensions is studied for a simplified model problem.The solid and fluid equations are coupled explicitly by inverting the solid discrete problem,and a simple iterative procedure to handle the non-linear characteristic of the hydraulic fracturing problem is proposed in this work.Numeral validation illustrates that the results of PGD match well with these of standard finite element method in terms o f fracture opening and fluid pressure in the hydro-fracture.Moreover,after the off-line calculations,the numerical results can be obtained in real time.展开更多
基金the National Science Foundation of China(Grant Nos.51804033 and 51936001)China Postdoctoral Science and Foundation(Grant No.2018M641254)+3 种基金Beijing Postdoctoral Research Foundation(2018-ZZ-045)the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality(Grant No.IDHT20170507)Program of Great Wall Scholar(Grant No.CIT&TCD20180313)Jointly Projects of Beijing Natural Science Foundation and Beijing Municipal Education Commission(Grant No.KZ201810017023).
文摘The hydraulic fracturing is a nonlinear,fluid-solid coupling and transient problem,in most cases it is always time-consuming to simulate this process numerically.In recent years,although many numerical methods were proposed to settle this problem,most of them still require a large amount of computer resources.Thus it is a high demand to develop more efficient numerical approaches to achieve the real-time monitoring of the fracture geometry during the hydraulic fracturing treatment.In this study,a reduced order modeling technique namely Proper Generalized Decomposition(PGD),is applied to accelerate the simulations of the transient,non-linear coupled system of hydraulic fracturing problem,to match this extremely tight response time constraint.The separability of the solution in space and time dimensions is studied for a simplified model problem.The solid and fluid equations are coupled explicitly by inverting the solid discrete problem,and a simple iterative procedure to handle the non-linear characteristic of the hydraulic fracturing problem is proposed in this work.Numeral validation illustrates that the results of PGD match well with these of standard finite element method in terms o f fracture opening and fluid pressure in the hydro-fracture.Moreover,after the off-line calculations,the numerical results can be obtained in real time.