期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Innovative Techniques Unveiled in Advanced Sheet Pile Curtain Design
1
作者 Peace Sèna Hounkpe Guy Oyéniran Adéoti +1 位作者 patrick oniakitan mondoté éric Adéchina Alamou 《Open Journal of Civil Engineering》 2024年第1期1-37,共37页
This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equi... This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equilibrium Methods (LEM) and Soil-Structure Interaction Methods (SSIM). While LEM methods, grounded in classical principles, provide valuable insights for preliminary design considerations, they may encounter limitations in addressing real-world complexities. In contrast, SSIM methods, including the SSI-SR approach, introduce precision and depth to the field. By employing numerical techniques such as Finite Element (FE) and Finite Difference (FD) analyses, these methods enable engineers to navigate the dynamics of soil-structure interaction. The exploration extends to SSI-FE, highlighting its essential role in civil engineering. By integrating Finite Element analysis with considerations for soil-structure interaction, the SSI-FE method offers a holistic understanding of how structures dynamically interact with their geotechnical environment. Throughout this exploration, the study dissects critical components governing SSIM methods, providing engineers with tools to navigate the intricate landscape of geotechnical design. The study acknowledges the significance of the Mohr-Coulomb constitutive model while recognizing its limitations, and guiding practitioners toward informed decision-making in geotechnical analyses. As the article concludes, it underscores the importance of continuous learning and innovation for the future of geotechnical engineering. With advancing technology and an evolving understanding of soil-structure interaction, the study remains committed to ensuring the safety, stability, and efficiency of geotechnical structures through cutting-edge design and analysis techniques. 展开更多
关键词 Sheet Pile Curtain Design Soil-Structure Interaction Geotechnical Engineering Advanced Design Techniques Finite Element Analysis Innovative Geotechnical Methods
下载PDF
Advanced Sheet Pile Curtain Design: Case Study of Cotonou East Corniche
2
作者 Peace Sèna Hounkpe Guy Oyéniran Adéoti +1 位作者 patrick oniakitan mondoté éric Adéchina Alamou 《Open Journal of Civil Engineering》 2024年第1期38-64,共27页
This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient... This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient construction practices. The paper explores two fundamental approaches to sheet pile design: limit equilibrium methods and numerical techniques, with a particular focus on finite element analysis. Utilizing the robust PLAXIS 2016 calculation code based on the finite element method and employing a simplified elastoplastic model (Mohr-Coulomb), this study meticulously models the interaction between sheet pile walls and surrounding soil. The research offers valuable insights into settlement and deformation patterns that adjacent buildings may experience during various construction phases. The central objective of this paper is to present the study’s findings and recommend potential mitigation measures for settlement effects on nearby structures. By unraveling the intricate interplay between sheet pile wall construction and neighboring buildings, the paper equips engineers and practitioners to make informed decisions that ensure the safety and integrity of the built environment. In the context of the Cotonou East Corniche development, the study addresses the limitations of existing software, such as RIDO, in predicting settlements and deformations affecting nearby buildings due to the substantial load supported by sheet pile walls. This information gap necessitates a comprehensive study to assess potential impacts on adjacent structures and propose suitable mitigation measures. The research underscores the intricate dynamics between sheet pile wall construction and its influence on the local environment. It emphasizes the critical importance of proactive engineering and vigilant monitoring in managing and mitigating potential hazards to nearby buildings. To mitigate these risks, the paper recommends measures such as deep foundations, ground improvement techniques, and retrofitting. The findings present 展开更多
关键词 Sheet Pile Walls and Structural Analysis Soil-Structure Interaction Modeling Structural Sustainability Cotonou East Corniche Sustainable Construction Plaxis Calculation Code Settlement Mitigation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部