In recent years, photovoltaic (PV) modules are widely used in many applications around the world. However, this renewable energy is plagued by dust, airborne particles, humidity<span style="font-family:Verdana...In recent years, photovoltaic (PV) modules are widely used in many applications around the world. However, this renewable energy is plagued by dust, airborne particles, humidity<span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> and high ambient temperatures. This paper studies the effect of dust soiling on silicon-based photovoltaic panel performance in a mini-solar power plant located in Dakar (Senegal, 14<span style="white-space:nowrap;">°</span>42'N latitude, 17<span style="white-space:nowrap;">°</span>28'W longitude). Results of the current</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">voltage (I - V) characteristics of photovoltaic panels tested under real conditions. We modeled a silicon-based PV cell in a dusty environment as a stack of thin layers of dust, glass and silicon. </span><span style="font-family:Verdana;">The </span><span style="font-family:;" "=""><span style="font-family:Verdana;">silicon layer is modeled as a P-N junction. The study performed under standard laboratory conditions with input data of irradiation at 1000 W/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, cell temperature at 25<span style="white-space:nowrap;">°</span>C and solar spectrum with Air Mass (AM) at 1.5 for the monocrystalline silicon PV cell (m-Si). The analysis with an ellipsometer of dust samples collected on photovoltaic panels allowed to obtain the refraction indices (real and imaginary) of these particles which will complete the input parameters of the model. Results show that for a photon flux arriving on dust layer of 70 μm (corresponding to dust deposit of 3.3 g/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">) deposited on silicon-based PV cell</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">, short circuit current decreases from 54 mA (for a clean cell) to 26 mA. Also, conversion efficiency 展开更多
文摘In recent years, photovoltaic (PV) modules are widely used in many applications around the world. However, this renewable energy is plagued by dust, airborne particles, humidity<span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> and high ambient temperatures. This paper studies the effect of dust soiling on silicon-based photovoltaic panel performance in a mini-solar power plant located in Dakar (Senegal, 14<span style="white-space:nowrap;">°</span>42'N latitude, 17<span style="white-space:nowrap;">°</span>28'W longitude). Results of the current</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">voltage (I - V) characteristics of photovoltaic panels tested under real conditions. We modeled a silicon-based PV cell in a dusty environment as a stack of thin layers of dust, glass and silicon. </span><span style="font-family:Verdana;">The </span><span style="font-family:;" "=""><span style="font-family:Verdana;">silicon layer is modeled as a P-N junction. The study performed under standard laboratory conditions with input data of irradiation at 1000 W/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, cell temperature at 25<span style="white-space:nowrap;">°</span>C and solar spectrum with Air Mass (AM) at 1.5 for the monocrystalline silicon PV cell (m-Si). The analysis with an ellipsometer of dust samples collected on photovoltaic panels allowed to obtain the refraction indices (real and imaginary) of these particles which will complete the input parameters of the model. Results show that for a photon flux arriving on dust layer of 70 μm (corresponding to dust deposit of 3.3 g/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">) deposited on silicon-based PV cell</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">, short circuit current decreases from 54 mA (for a clean cell) to 26 mA. Also, conversion efficiency