期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
锚杆抗疲劳性能对深部动载扰动硐室围岩稳定性影响 被引量:11
1
作者 刘学生 武允昊 +3 位作者 谭云亮 王洪磊 purev lkhamsuren 李学斌 《中国矿业大学学报》 EI CAS CSCD 北大核心 2021年第3期449-458,共10页
针对煤矿井下硐室的锚杆支护结构在长期低强度动载的作用下易发生疲劳破坏从而引起硐室围岩变形、失稳的问题,以龙固煤矿井下煤矸分离系统硐室所处地质条件为背景,在分析锚杆抗疲劳性能影响因素的基础上,计算得到了煤矿硐室常用HRB 600... 针对煤矿井下硐室的锚杆支护结构在长期低强度动载的作用下易发生疲劳破坏从而引起硐室围岩变形、失稳的问题,以龙固煤矿井下煤矸分离系统硐室所处地质条件为背景,在分析锚杆抗疲劳性能影响因素的基础上,计算得到了煤矿硐室常用HRB 600热轧左旋无纵肋螺纹钢锚杆的疲劳强度及不同动载条件下疲劳寿命.通过FLAC3D软件对锚杆疲劳寿命进行了验证,并探究了不同抗疲劳性能锚杆支护下硐室围岩的变形破坏规律,认为锚杆抗疲劳性能对受动载扰动硐室围岩稳定性及破坏程度具有直接的较大影响.研究结果表明:锚杆抗疲劳强度越大,其抵抗低强度交变动载扰动的能力越强,硐室围岩稳定性越高,如采用HRB 400型锚杆支护时硐室围岩塑性区范围为252 m^(2),而采用抗疲劳强度更高的HRB 600型锚杆支护时,塑性区范围减小22.3%;当抗疲劳强度越高的锚杆发生疲劳破坏时,围岩的变形越剧烈、破坏范围更大、且硐室灾变失稳可能更大,如采用HRB 400型锚杆支护硐室,其疲劳破坏后塑性区增加面积为HRB 600型锚杆的54.7%. 展开更多
关键词 抗疲劳性能 动载扰动 硐室稳定性 锚杆支护 数值模拟
原文传递
深部超大断面分选硐室群布置方式优化研究 被引量:4
2
作者 刘学生 王新 +2 位作者 谭云亮 purev lkhamsuren 宋世琳 《煤炭科学技术》 CAS CSCD 北大核心 2022年第8期32-39,共8页
为满足井下分选和就地充填要求,井下往往需要密集布置多条硐室,其布置方式对硐室群围岩控制影响重大,是硐室群设计的重要内容。以新巨龙煤矿-800 m水平煤矸分离硐室群为背景,采用理论分析、数值模拟和现场监测相结合,较系统地探讨了硐... 为满足井下分选和就地充填要求,井下往往需要密集布置多条硐室,其布置方式对硐室群围岩控制影响重大,是硐室群设计的重要内容。以新巨龙煤矿-800 m水平煤矸分离硐室群为背景,采用理论分析、数值模拟和现场监测相结合,较系统地探讨了硐室群围岩稳定性影响因素,并运用FLAC软件建立数值计算模型,获得了不同布置方式时硐室间距对围岩变形破坏影响规律。随着硐室间距增大,相邻硐室围岩相互影响逐渐减小,同层位布置时最优间距约为15 m,错层位布置时约为18 m。采取同层位布置且硐室间距为15 m时,围岩应力集中区域主要位于硐室交叉处,应力峰值为35 MPa,围岩最大变形量为43 mm,塑性破坏区宽度约为5 m,硐室间存在约5 m见方的弹性承载岩柱。现场工程中4条硐室采用同层位“井字型”布置方式,间距为15~89 m,实践表明:硐室群围岩变形主要集中在硐室成型初期,且以硐室中部变形最大,约为26 mm,围岩整体稳定性好。研究成果可为深埋硐室群布置方式设计及参数优化等提供参考。 展开更多
关键词 超大断面 硐室群 硐室布置 深部围岩 高应力
下载PDF
Experimental and numerical simulation of loading rate effects on failure and strain energy characteristics of coal-rock composite samples 被引量:16
3
作者 MAQing TAN Yun-liang +3 位作者 LIU Xue-sheng ZHAO Zeng-hui FAN De-yuan purev lkhamsuren 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第10期3207-3222,共16页
The deformation and failure of coal and rock is energy-driving results according to thermodynamics.It is important to study the strain energy characteristics of coal-rock composite samples to better understand the def... The deformation and failure of coal and rock is energy-driving results according to thermodynamics.It is important to study the strain energy characteristics of coal-rock composite samples to better understand the deformation and failure mechanism of of coal-rock composite structures.In this research,laboratory tests and numerical simulation of uniaxial compressions of coal-rock composite samples were carried out with five different loading rates.The test results show that strength,deformation,acoustic emission(AE)and energy evolution of coal-rock composite sample all have obvious loading rate effects.The uniaxial compressive strength and elastic modulus increase with the increase of loading rate.And with the increase of loading rate,the AE energy at the peak strength of coal-rock composites increases first,then decreases,and then increases.With the increase of loading rate,the AE cumulative count first decreases and then increases.And the total absorption energy and dissipation energy of coal-rock composite samples show non-linear increasing trends,while release elastic strain energy increases first and then decreases.The laboratory experiments conducted on coal-rock composite samples were simulated numerically using the particle flow code(PFC).With careful selection of suitable material constitutive models for coal and rock,and accurate estimation and calibration of mechanical parameters of coal-rock composite sample,it was possible to obtain a good agreement between the laboratory experimental and numerical results.This research can provide references for understanding failure of underground coalrock composite structure by using energy related measuring methods. 展开更多
关键词 coal-rock composite samples uniaxial compression loading rate acoustic emission energy evolution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部