Information on the center of genetic diversity of soybean(Glycine max) will be helpful not only for designing efficient strategies for breeding programs, but also for understanding the domestication and origin of th...Information on the center of genetic diversity of soybean(Glycine max) will be helpful not only for designing efficient strategies for breeding programs, but also for understanding the domestication and origin of this species. Here, we describe an analysis of genetic diversity based on simple-sequence repeat(SSR) variations within a core collection of 2 111 accessions of Chinese soybean landraces. Prior to the diversity assessment, the geographic origin of each accession was mapped. The map was then divided into grids each 2.5° in latitude and 5° in longitude. We found two regions that had higher number of alleles(NA) and greater polymorphic information content(PIC) values than the others. These regions are adjacently located within grid position of 30°–35°N×105°–110°E, which includes the valley of the middle and lower reaches of the Wei River, and the valley of the upper reaches of the Hanjiang River. It was also observed that in many regions, genetic diversity decreased with the increase in distance from the center. Another region, in northern Hebei Province(115°–120°E×40°–42.5°N), was observed having higher diversity than any surrounding regions, indicating that this is a sub-center of soybean diversity. Based on the presented results, the domestication and origin of soybean are also discussed.展开更多
Chalkiness is one of the most important agronomic traits in rice breeding,which directly affects the quality of rice seed.In this study,we identified a chalkiness endosperm mutant,chalk-h,from N-methyl-N-nitrosourea(M...Chalkiness is one of the most important agronomic traits in rice breeding,which directly affects the quality of rice seed.In this study,we identified a chalkiness endosperm mutant,chalk-h,from N-methyl-N-nitrosourea(MNU)-induced japonica rice cultivar Hwacheong(HC).Compared with wild type(WT)-HC,chalk-h showed severe chalkiness in the endosperm,yellowish green leaves,as well as reduced plant height.Scanning electron microscopy(SEM)analysis showed that starch grains in the chalk-h mutant were irregular in size and loosely arranged,with large gaps between granules,forming ovoid or orbicular shapes.MutMap analysis revealed that the phenotype of chalk-h is controlled by a single recessive gene LOC_Os11g39670 encoding seryl-tRNA synthetase,which is renamed as CHALK-H.A point mutation occurs in chalk-h on the sixth exon(at nucleotide 791)of CHALK-H,in which adenine(A)is replaced by thymidine(T),resulting in an amino acid codon change from glutamine(Glu)to valine(Val).The chalk-h mutant exhibited a heat-sensitive phenotype from the 3-leaf stage,including yellow-green leaves and reduced pigment content.The transcriptional expression of starch synthesis-related genes was down-regulated in the chalk-h mutants compared to WT-HC at different grain-filling stages.With an increase in temperature,the expression of photosynthesis-related genes was down-regulated in the chalk-h mutant compared to WT-HC.Overexpression of CHALK-H rescued the phenotype of chalk-h,with endosperm and leaf color similar to those of WT-HC.Our findings reveal that CHALK-H is a causative gene controlling chalkiness and leaf color of the chalk-h mutant.CHALK-H is the same gene locus as TSCD11,which was reported to be involved in chloroplast development under high temperature.We suggest that CHALK-H/TSCD11 plays important roles not only in chloroplast development,but also in photosynthesis and starch synthesis during rice growth and development,so it has great application potential in rice breeding for high quality and yield.展开更多
基金supported by the National Basic Research Program of China(973,G1998010203 and 2004CB117203)the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciences
文摘Information on the center of genetic diversity of soybean(Glycine max) will be helpful not only for designing efficient strategies for breeding programs, but also for understanding the domestication and origin of this species. Here, we describe an analysis of genetic diversity based on simple-sequence repeat(SSR) variations within a core collection of 2 111 accessions of Chinese soybean landraces. Prior to the diversity assessment, the geographic origin of each accession was mapped. The map was then divided into grids each 2.5° in latitude and 5° in longitude. We found two regions that had higher number of alleles(NA) and greater polymorphic information content(PIC) values than the others. These regions are adjacently located within grid position of 30°–35°N×105°–110°E, which includes the valley of the middle and lower reaches of the Wei River, and the valley of the upper reaches of the Hanjiang River. It was also observed that in many regions, genetic diversity decreased with the increase in distance from the center. Another region, in northern Hebei Province(115°–120°E×40°–42.5°N), was observed having higher diversity than any surrounding regions, indicating that this is a sub-center of soybean diversity. Based on the presented results, the domestication and origin of soybean are also discussed.
基金the Administration of Central Funds Guiding the Local Science and Technology Development,China(202002069JC)the earmarked fund for the China Agriculture Research System(CARS-01-10)。
文摘Chalkiness is one of the most important agronomic traits in rice breeding,which directly affects the quality of rice seed.In this study,we identified a chalkiness endosperm mutant,chalk-h,from N-methyl-N-nitrosourea(MNU)-induced japonica rice cultivar Hwacheong(HC).Compared with wild type(WT)-HC,chalk-h showed severe chalkiness in the endosperm,yellowish green leaves,as well as reduced plant height.Scanning electron microscopy(SEM)analysis showed that starch grains in the chalk-h mutant were irregular in size and loosely arranged,with large gaps between granules,forming ovoid or orbicular shapes.MutMap analysis revealed that the phenotype of chalk-h is controlled by a single recessive gene LOC_Os11g39670 encoding seryl-tRNA synthetase,which is renamed as CHALK-H.A point mutation occurs in chalk-h on the sixth exon(at nucleotide 791)of CHALK-H,in which adenine(A)is replaced by thymidine(T),resulting in an amino acid codon change from glutamine(Glu)to valine(Val).The chalk-h mutant exhibited a heat-sensitive phenotype from the 3-leaf stage,including yellow-green leaves and reduced pigment content.The transcriptional expression of starch synthesis-related genes was down-regulated in the chalk-h mutants compared to WT-HC at different grain-filling stages.With an increase in temperature,the expression of photosynthesis-related genes was down-regulated in the chalk-h mutant compared to WT-HC.Overexpression of CHALK-H rescued the phenotype of chalk-h,with endosperm and leaf color similar to those of WT-HC.Our findings reveal that CHALK-H is a causative gene controlling chalkiness and leaf color of the chalk-h mutant.CHALK-H is the same gene locus as TSCD11,which was reported to be involved in chloroplast development under high temperature.We suggest that CHALK-H/TSCD11 plays important roles not only in chloroplast development,but also in photosynthesis and starch synthesis during rice growth and development,so it has great application potential in rice breeding for high quality and yield.