Soil is the major source of infinite lives on Earth and the quality of soil plays significant role on Agriculture practices all around.Hence,the evaluation of soil quality is very important for determining the amount ...Soil is the major source of infinite lives on Earth and the quality of soil plays significant role on Agriculture practices all around.Hence,the evaluation of soil quality is very important for determining the amount of nutrients that the soil require for proper yield.In present decade,the application of deep learning models in many fields of research has created greater impact.The increasing soil data availability of soil data there is a greater demand for the remotely avail open source model,leads to the incorporation of deep learning method to predict the soil quality.With that concern,this paper proposes a novel model called Improved Soil Quality Prediction Model using Deep Learning(ISQP-DL).The work considers the chemical,physical and biological factors of soil in particular area to estimate the soil quality.Firstly,pH rating of soil samples has been collected from the soil testing laboratory from which the acidic range has been categorized through soil test and the same data has been taken as input to the Deep Neural Network Regression(DNNR)model.Secondly,soil nutrient data has been given as second input to the DNNR model.By utilizing this data set,the DNNR method is used to evaluate the fertility rate by which the soil quality has been estimated.For training and testing,the model uses Deep Neural Network Regression(DNNR),by utilizing the dataset.The results show that the proposed model is effective for SQP(Soil Quality Prediction Model)with efficient good fitting and generality is enhanced with input features with higher rate of classification accuracy.The results show that the proposed model achieves 96.7%of accuracy rate compared with existing models.展开更多
A hybrid time-frequency method known as Gabor-Wigner transform (GWT) is introduced in this paper for examining the time-frequency patterns of earthquake damaged buildings. GWT is developed by combining the Gabor trans...A hybrid time-frequency method known as Gabor-Wigner transform (GWT) is introduced in this paper for examining the time-frequency patterns of earthquake damaged buildings. GWT is developed by combining the Gabor transform (GT) and Wigner-Ville distribution (WVD). GT and WVD have been used separately on synthetic and recorded earthquake data to identify frequency shifting due to earthquake damages, but GT is prone to windowing effect and WVD involves ambiguity function. Hence to obtain better clarity and to remove the cross terms (frequency interference), GT and WVD are judiciously combined and the resultant GWT used to identify frequency shifting. Synthetic seismic response of an instrumented building and real-time earthquake data recorded on the building were investigated using GWT. It is found that GWT offers good accuracy for even slow variations in frequency, good time-frequency resolution, and localized response. Presented results confirm the efficacy of GWT when compared with GT and WVD used separately. Simulation results were quantified by the Renyi entropy measures and GWT shown to be an adequate technique in identifying localized response for structural damage detection.展开更多
文摘Soil is the major source of infinite lives on Earth and the quality of soil plays significant role on Agriculture practices all around.Hence,the evaluation of soil quality is very important for determining the amount of nutrients that the soil require for proper yield.In present decade,the application of deep learning models in many fields of research has created greater impact.The increasing soil data availability of soil data there is a greater demand for the remotely avail open source model,leads to the incorporation of deep learning method to predict the soil quality.With that concern,this paper proposes a novel model called Improved Soil Quality Prediction Model using Deep Learning(ISQP-DL).The work considers the chemical,physical and biological factors of soil in particular area to estimate the soil quality.Firstly,pH rating of soil samples has been collected from the soil testing laboratory from which the acidic range has been categorized through soil test and the same data has been taken as input to the Deep Neural Network Regression(DNNR)model.Secondly,soil nutrient data has been given as second input to the DNNR model.By utilizing this data set,the DNNR method is used to evaluate the fertility rate by which the soil quality has been estimated.For training and testing,the model uses Deep Neural Network Regression(DNNR),by utilizing the dataset.The results show that the proposed model is effective for SQP(Soil Quality Prediction Model)with efficient good fitting and generality is enhanced with input features with higher rate of classification accuracy.The results show that the proposed model achieves 96.7%of accuracy rate compared with existing models.
文摘A hybrid time-frequency method known as Gabor-Wigner transform (GWT) is introduced in this paper for examining the time-frequency patterns of earthquake damaged buildings. GWT is developed by combining the Gabor transform (GT) and Wigner-Ville distribution (WVD). GT and WVD have been used separately on synthetic and recorded earthquake data to identify frequency shifting due to earthquake damages, but GT is prone to windowing effect and WVD involves ambiguity function. Hence to obtain better clarity and to remove the cross terms (frequency interference), GT and WVD are judiciously combined and the resultant GWT used to identify frequency shifting. Synthetic seismic response of an instrumented building and real-time earthquake data recorded on the building were investigated using GWT. It is found that GWT offers good accuracy for even slow variations in frequency, good time-frequency resolution, and localized response. Presented results confirm the efficacy of GWT when compared with GT and WVD used separately. Simulation results were quantified by the Renyi entropy measures and GWT shown to be an adequate technique in identifying localized response for structural damage detection.