The complexity of multi-dimensional climate, environmental and human health information complicates bringing together scientists, civil society, and decision makers to provide adequate mitigation and adaptation option...The complexity of multi-dimensional climate, environmental and human health information complicates bringing together scientists, civil society, and decision makers to provide adequate mitigation and adaptation options for the consequences of global environmental change. To provide an effective pathway to conciliate (integrate) these datasets, we present PULSE-Brazil as the Platform for Understanding Long-term Sustainability of Ecosystems and human health. The overarching aim of this paper is to focus on two study cases in the Brazilian state of Acre, 1) analyzing recent socio-environmental disasters such as the impacts of droughts and consequent increases in fire detections on the incidence of respiratory diseases, and 2) evaluating the impacts of temperature increases in combination with rainfall seasonality upon the incidence of Dengue fever. Based on data available in PULSE-Brazil platform, we also aim to provide insights on the consequences of future climate variability on ecosystems and human health. Finally, we provide a discussion on the collaborative process between scientists and policymakers that defined the PULSE-Brazil platform specifications and datasets and propose a conceptual pathway for promoting the interaction between science and policy during the process of producing a tool that allows the understating of climate-relate processes. Our results clearly demonstrated that ecosystems are under increased fire risk in the future that will, in turn, affect the health of human populations. Moreover, humans are also exposed to critical Dengue fever outbreaks with the projected increase in minimum temperatures. Therefore, minimizing the impacts of these potentially ascending socio-environmental problems is the first step for adapting to a changing climate in the Amazon region. We expect that PULSE-Brazil will serve not only as a technical tool for supporting governance, management, mitigation and long-term adaptation plans for climate impacts and natural disasters, but also will take advantage of its gr展开更多
The food industry uses a wide variety of processes which are not well understood. Current modelling and measurement approaches are reviewed, with specific reference to work at Birmingham on Particle tracking (PEPT) an...The food industry uses a wide variety of processes which are not well understood. Current modelling and measurement approaches are reviewed, with specific reference to work at Birmingham on Particle tracking (PEPT) and the potential of temperature time indicators in process validation.展开更多
Numerical climate models render data in a gridded format which is often problematic for integrated analysis with other kinds of data in jurisdictional formats. In this paper a joint analysis of municipal Gross Domesti...Numerical climate models render data in a gridded format which is often problematic for integrated analysis with other kinds of data in jurisdictional formats. In this paper a joint analysis of municipal Gross Domestic Product per capita (GDPc) and predicted temperature increase was undertaken in order to estimate different levels of human and economic exposure. This is based on a method of converting model outputs into a country municipal grid which enabled depicting climate predictions from the Eta-Hadgem2-ES Regional Climate Model (RCM) into the municipal level in Brazil. The conversion to country municipality grid was made using a combination of interpolation and buffering techniques in ArcGIS for two emission scenarios (RCP 4.5 and 8.5) and three timeframes (2011-2040, 2041-2070, 2071-2100) for mean temperature increase and number of heatwave days (WSDI). The results were used to support the Third National Communication (TCN) of Brazil to the United Nations Framework Convention on Climate Change (UNFCCC) and show a coherent matching of the gridded output from the original RCM. The joint climate and GDPc analysis show that in the beginning of the century the more severe warming is centred over regions where GDPc is generally higher (Centre-West and Southeast). At the end of the century, critical levels of warming spread north and northeastwards where municipalities have the lowest GDPc levels. In the high emission scenario (RCP 8.5), the strongest warming and the spreading over poorer regions are anticipated to the mid-century. These results are the key to further explore solutions for climate change adaptation based on current resources and prepare in different sectors, for long-term risk management and climate adaptation planning strategies.展开更多
文摘The complexity of multi-dimensional climate, environmental and human health information complicates bringing together scientists, civil society, and decision makers to provide adequate mitigation and adaptation options for the consequences of global environmental change. To provide an effective pathway to conciliate (integrate) these datasets, we present PULSE-Brazil as the Platform for Understanding Long-term Sustainability of Ecosystems and human health. The overarching aim of this paper is to focus on two study cases in the Brazilian state of Acre, 1) analyzing recent socio-environmental disasters such as the impacts of droughts and consequent increases in fire detections on the incidence of respiratory diseases, and 2) evaluating the impacts of temperature increases in combination with rainfall seasonality upon the incidence of Dengue fever. Based on data available in PULSE-Brazil platform, we also aim to provide insights on the consequences of future climate variability on ecosystems and human health. Finally, we provide a discussion on the collaborative process between scientists and policymakers that defined the PULSE-Brazil platform specifications and datasets and propose a conceptual pathway for promoting the interaction between science and policy during the process of producing a tool that allows the understating of climate-relate processes. Our results clearly demonstrated that ecosystems are under increased fire risk in the future that will, in turn, affect the health of human populations. Moreover, humans are also exposed to critical Dengue fever outbreaks with the projected increase in minimum temperatures. Therefore, minimizing the impacts of these potentially ascending socio-environmental problems is the first step for adapting to a changing climate in the Amazon region. We expect that PULSE-Brazil will serve not only as a technical tool for supporting governance, management, mitigation and long-term adaptation plans for climate impacts and natural disasters, but also will take advantage of its gr
基金Work at Birmingham described here was sponsored by a number of companies, including Cadbury and Unilever. PWC wishes to acknowledge financial support from DEFRA through the LINK programme.
文摘The food industry uses a wide variety of processes which are not well understood. Current modelling and measurement approaches are reviewed, with specific reference to work at Birmingham on Particle tracking (PEPT) and the potential of temperature time indicators in process validation.
基金the United Nations Programme for Development(UNDP),Rede Clima(FINEP 01.13.0353.00)the Brazilian Ministry for Science and Technology for their financial support
文摘Numerical climate models render data in a gridded format which is often problematic for integrated analysis with other kinds of data in jurisdictional formats. In this paper a joint analysis of municipal Gross Domestic Product per capita (GDPc) and predicted temperature increase was undertaken in order to estimate different levels of human and economic exposure. This is based on a method of converting model outputs into a country municipal grid which enabled depicting climate predictions from the Eta-Hadgem2-ES Regional Climate Model (RCM) into the municipal level in Brazil. The conversion to country municipality grid was made using a combination of interpolation and buffering techniques in ArcGIS for two emission scenarios (RCP 4.5 and 8.5) and three timeframes (2011-2040, 2041-2070, 2071-2100) for mean temperature increase and number of heatwave days (WSDI). The results were used to support the Third National Communication (TCN) of Brazil to the United Nations Framework Convention on Climate Change (UNFCCC) and show a coherent matching of the gridded output from the original RCM. The joint climate and GDPc analysis show that in the beginning of the century the more severe warming is centred over regions where GDPc is generally higher (Centre-West and Southeast). At the end of the century, critical levels of warming spread north and northeastwards where municipalities have the lowest GDPc levels. In the high emission scenario (RCP 8.5), the strongest warming and the spreading over poorer regions are anticipated to the mid-century. These results are the key to further explore solutions for climate change adaptation based on current resources and prepare in different sectors, for long-term risk management and climate adaptation planning strategies.