Online reviews are considered of an important indicator for users to decide on the activity they wish to do, whether it is watching a movie, going to a restaurant, or buying a product. It also serves businesses as it ...Online reviews are considered of an important indicator for users to decide on the activity they wish to do, whether it is watching a movie, going to a restaurant, or buying a product. It also serves businesses as it keeps tracking user feedback. The sheer volume of online reviews makes it difficult for a human to process and extract all significant information to make purchasing choices. As a result, there has been a trend toward systems that can automatically summarize opinions from a set of reviews. In this paper, we present a hybrid algorithm that combines an auto-summarization algorithm with a sentiment analysis (SA) algorithm, to offer a personalized user experiences and to solve the semantic-pragmatic gap. The algorithm consists of six steps that start with the original text document and generate a summary of that text by choosing the N most relevant sentences in the text. The tagged texts are then processed and then passed to a Naive Bayesian classifier along with their tags as training data. The raw data used in this paper belong to the tagged corpus positive and negative processed movie reviews introduced in [1]. The measures that are used to gauge the performance of the SA and classification algorithm for all test cases consist of accuracy, recall, and precision. We describe in details both the aspect of extraction and sentiment detection modules of our system.展开更多
The rapid advancement in technology and the increased number of web applications with very short turnaround time caused an increased need for protection from vulnerabilities that grew due to decision makers overlookin...The rapid advancement in technology and the increased number of web applications with very short turnaround time caused an increased need for protection from vulnerabilities that grew due to decision makers overlooking the need to be protected from attackers or software developers lacking the skills and experience in writing secure code. Structured Query Language (SQL) Injection, cross-site scripting (XSS), Distributed Denial of service (DDos) and suspicious user behaviour are some of the common types of vulnerabilities in web applications by which the attacker can disclose the web application sensitive information such as credit card numbers and other confidential information. This paper proposes a framework for the detection and prevention of web threats (WTDPF) which is based on preventing the attacker from gaining access to confidential data by studying his behavior during the action of attack and taking preventive measures to reduce the risks of the attack and as well reduce the consequences of such malicious action. The framework consists of phases which begin with the input checking phase, signature based action component phase, alert and response phases. Additionally, the framework has a logging functionality to store and keep track of any action taking place and as well preserving information about the attacker IP address, date and time of the attack, type of the attack, and the mechanism the attacker used. Moreover, we provide experimental results for different kinds of attacks, and we illustrate the success of the proposed framework for dealing with and preventing malicious actions.展开更多
The hex-cell is one of the interconnection networks used for parallel systems. The main idea of the hex-cell is that there are hexagon cells that construct the network;each one of those cells has six nodes. The perfor...The hex-cell is one of the interconnection networks used for parallel systems. The main idea of the hex-cell is that there are hexagon cells that construct the network;each one of those cells has six nodes. The performance of the network is affected by many factors one of the factors as load balancing. Until the moment of writing of this paper, there is no load balancing algorithm for this network. The proposed algorithm for dynamic load balancing on hex-cell is based on Tree Walking Algorithm (TWA) for load balancing on tree interconnection network and the ring all to all broadcast.展开更多
文摘Online reviews are considered of an important indicator for users to decide on the activity they wish to do, whether it is watching a movie, going to a restaurant, or buying a product. It also serves businesses as it keeps tracking user feedback. The sheer volume of online reviews makes it difficult for a human to process and extract all significant information to make purchasing choices. As a result, there has been a trend toward systems that can automatically summarize opinions from a set of reviews. In this paper, we present a hybrid algorithm that combines an auto-summarization algorithm with a sentiment analysis (SA) algorithm, to offer a personalized user experiences and to solve the semantic-pragmatic gap. The algorithm consists of six steps that start with the original text document and generate a summary of that text by choosing the N most relevant sentences in the text. The tagged texts are then processed and then passed to a Naive Bayesian classifier along with their tags as training data. The raw data used in this paper belong to the tagged corpus positive and negative processed movie reviews introduced in [1]. The measures that are used to gauge the performance of the SA and classification algorithm for all test cases consist of accuracy, recall, and precision. We describe in details both the aspect of extraction and sentiment detection modules of our system.
文摘The rapid advancement in technology and the increased number of web applications with very short turnaround time caused an increased need for protection from vulnerabilities that grew due to decision makers overlooking the need to be protected from attackers or software developers lacking the skills and experience in writing secure code. Structured Query Language (SQL) Injection, cross-site scripting (XSS), Distributed Denial of service (DDos) and suspicious user behaviour are some of the common types of vulnerabilities in web applications by which the attacker can disclose the web application sensitive information such as credit card numbers and other confidential information. This paper proposes a framework for the detection and prevention of web threats (WTDPF) which is based on preventing the attacker from gaining access to confidential data by studying his behavior during the action of attack and taking preventive measures to reduce the risks of the attack and as well reduce the consequences of such malicious action. The framework consists of phases which begin with the input checking phase, signature based action component phase, alert and response phases. Additionally, the framework has a logging functionality to store and keep track of any action taking place and as well preserving information about the attacker IP address, date and time of the attack, type of the attack, and the mechanism the attacker used. Moreover, we provide experimental results for different kinds of attacks, and we illustrate the success of the proposed framework for dealing with and preventing malicious actions.
文摘The hex-cell is one of the interconnection networks used for parallel systems. The main idea of the hex-cell is that there are hexagon cells that construct the network;each one of those cells has six nodes. The performance of the network is affected by many factors one of the factors as load balancing. Until the moment of writing of this paper, there is no load balancing algorithm for this network. The proposed algorithm for dynamic load balancing on hex-cell is based on Tree Walking Algorithm (TWA) for load balancing on tree interconnection network and the ring all to all broadcast.