We study a double phase Dirichlet problem with a reaction that has a parametric singular term. Using the Nehari manifold method, we show that for all small values of the parameter, the problem has at least two positiv...We study a double phase Dirichlet problem with a reaction that has a parametric singular term. Using the Nehari manifold method, we show that for all small values of the parameter, the problem has at least two positive, energy minimizing solutions.展开更多
We consider a nonlinear Robin problem driven by the anisotropic(p,q)-Laplacian and with a reaction exhibiting the competing effects of a parametric sublinear(concave) term and of a superlinear(convex) term.We prove a ...We consider a nonlinear Robin problem driven by the anisotropic(p,q)-Laplacian and with a reaction exhibiting the competing effects of a parametric sublinear(concave) term and of a superlinear(convex) term.We prove a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter varies.We also prove the existence of a minimal positive solution and determine the monotonicity and continuity properties of the minimal solution map.展开更多
基金supported by the NNSF of China (12071413, 12111530282)the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No. 823731 CONMECH。
文摘We study a double phase Dirichlet problem with a reaction that has a parametric singular term. Using the Nehari manifold method, we show that for all small values of the parameter, the problem has at least two positive, energy minimizing solutions.
基金supported by NNSF of China(12071413)NSF of Guangxi(2018GXNSFDA138002)。
文摘We consider a nonlinear Robin problem driven by the anisotropic(p,q)-Laplacian and with a reaction exhibiting the competing effects of a parametric sublinear(concave) term and of a superlinear(convex) term.We prove a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter varies.We also prove the existence of a minimal positive solution and determine the monotonicity and continuity properties of the minimal solution map.