The self-absorption effect is one of the main factors affecting the quantitative analysis accuracy of laser-induced breakdown spectroscopy.In this paper,the self-absorption effects of laserinduced 7050 Al alloy plasma...The self-absorption effect is one of the main factors affecting the quantitative analysis accuracy of laser-induced breakdown spectroscopy.In this paper,the self-absorption effects of laserinduced 7050 Al alloy plasma under different pressures in air,Ar,and N2have been studied.Compared with air and N2,Ar significantly enhances the spectral signal.Furthermore,the spectral self-absorption coefficient is calculated to quantify the degree of self-absorption,and the influences of gas species and gas pressure on self-absorption are analyzed.In addition,it is found that the spectral intensity fluctuates with the change of pressure of three gases.It can also be seen that the fluctuation of spectral intensity with pressure is eliminated after correcting,which indicates that the self-absorption leads to the fluctuation of spectral intensity under different pressures.The analysis shows that the evolution of optical thin spectral lines with pressure in different gases is mainly determined by the gas properties and the competition between plasma confinement and Rayleigh–Taylor instability.展开更多
基金National Key Research and Development Program of China(Nos.2017YFE0301306,2017YFE0301300,and 2017YFE0301506)Fujian Province Industrial Guidance Project(No.2019H0011).
文摘The self-absorption effect is one of the main factors affecting the quantitative analysis accuracy of laser-induced breakdown spectroscopy.In this paper,the self-absorption effects of laserinduced 7050 Al alloy plasma under different pressures in air,Ar,and N2have been studied.Compared with air and N2,Ar significantly enhances the spectral signal.Furthermore,the spectral self-absorption coefficient is calculated to quantify the degree of self-absorption,and the influences of gas species and gas pressure on self-absorption are analyzed.In addition,it is found that the spectral intensity fluctuates with the change of pressure of three gases.It can also be seen that the fluctuation of spectral intensity with pressure is eliminated after correcting,which indicates that the self-absorption leads to the fluctuation of spectral intensity under different pressures.The analysis shows that the evolution of optical thin spectral lines with pressure in different gases is mainly determined by the gas properties and the competition between plasma confinement and Rayleigh–Taylor instability.
基金supported by the National Natural Science Foundation of China (12141002,52088101,11874417,11974389,and 52172216)the Ministry of Science and Technology of China (2021YFA0718702)+5 种基金the Chinese Academy of Sciences through the Strategic Priority Research Programthe Scientific Instrument Developing Programthe Project for Young Scientists in Basic Research (XDB33000000,YJKYYQ20200017,and YSBR-057)the Chinese Postdoctoral Science Foundation (E0BK181)the funding support of the National Key Research and Development Program of China (2018YFA0702100)the support from the Key Research Project of Zhejiang Laboratory (2021PE0AC02)。