期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of Pore Size on the Nucleate Pool Boiling of Structured Enhanced Tubes 被引量:1
1
作者 naehyunkim Jong-WonKim 《Journal of Thermal Science》 SCIE EI CAS CSCD 2000年第3期230-235,共6页
In this study, pool boiling test results are provided for the structured enhanced tubes having pores with connecting gaps. The surface geometly of the present tube is similar to that of Turbo-B. Three tubes with diffe... In this study, pool boiling test results are provided for the structured enhanced tubes having pores with connecting gaps. The surface geometly of the present tube is similar to that of Turbo-B. Three tubes with different pore size (0.20 mm, 0.23 mm and 0.27 mm) were manufactured and tested using R-11, R-123 and R-134a. The pore size which yields the maximum heat transfer coefficient varied depending on the refrigerant. For R-134a, the maximum heat transfer coefficient was obtained for the tube having 0.27 nun pore size. For R-11 and R- 123, the optimum pore size was 0.23 mm. One novel feature of the present tubes is that their boiling curves do not show a cross-over characteristic, which existing pored tubes do. The connecting gaps of the present tube are believed to serve an additional route for the liquid supply and delay the dry-out of the tunnel. The present tubes yield the heat transfer coefficients approximately equal to those of the existing pored enhanced tubes. At the heat flux 40 kW/m2 and saturation temperature 4.4° C, the heat transfer coefficients of the present tubes are 6.5 times larger for R-11, 6.0 times larger for R-123 and 5.0 times larger for R-134a than that of the smooth tube 展开更多
关键词 structured enhanced tube PORE GAP nucleate pool boiling R-11 R-123 R-134a.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部