A compact model is proposed to derive the charge density of the AlInSb/InSb HEMT devices by con- sidering the variation of Fermi level, the first subband, the second subband and sheet carrier charge density with appli...A compact model is proposed to derive the charge density of the AlInSb/InSb HEMT devices by con- sidering the variation of Fermi level, the first subband, the second subband and sheet carrier charge density with applied gate voltage. The proposed model considers the Fermi level dependence of charge density and vice versa. The analytical results generated by the proposed model are compared and they agree well with the experimental results. The developed model can be used to implement a physics based compact model for an InSb HEMT device in SPICE applications.展开更多
The wireless sensor network (WSN) is one of the budding exploring areas and fast rising fields in wireless communications. The sensor nodes in the network are generally small-size, low-cost, low-power and multi-functi...The wireless sensor network (WSN) is one of the budding exploring areas and fast rising fields in wireless communications. The sensor nodes in the network are generally small-size, low-cost, low-power and multi-function capabilities. Wireless sensor networks (WSNs) are used for various applications;since numerous sensor nodes are usually deployed on remote and inaccessible places, the employment and preservation should be easy and scalable. Sensor nodes in the field being run out of energy quickly has been an issue and many energy efficient routing protocols have been proposed to solve this problem and preserve the long life of the network. This paper work proposes a hierarchical based node activation routing technique which shows energy efficiency. This technique selects cluster head with highest residual energy in each communication round of transmission to the base station from the cluster heads. Hierarchical based node activation routing technique with different levels of hierarchy simulation results prolongs the lifetime of the network compared to other clustering schemes and communication rounds of simulation increase significantly.展开更多
基金Project supported by the Council of Scientific & Industrial Research(CSIR),India under the Senior Research Fellowship Scheme(No.08/237(0005)/2012-EMR-I)
文摘A compact model is proposed to derive the charge density of the AlInSb/InSb HEMT devices by con- sidering the variation of Fermi level, the first subband, the second subband and sheet carrier charge density with applied gate voltage. The proposed model considers the Fermi level dependence of charge density and vice versa. The analytical results generated by the proposed model are compared and they agree well with the experimental results. The developed model can be used to implement a physics based compact model for an InSb HEMT device in SPICE applications.
文摘The wireless sensor network (WSN) is one of the budding exploring areas and fast rising fields in wireless communications. The sensor nodes in the network are generally small-size, low-cost, low-power and multi-function capabilities. Wireless sensor networks (WSNs) are used for various applications;since numerous sensor nodes are usually deployed on remote and inaccessible places, the employment and preservation should be easy and scalable. Sensor nodes in the field being run out of energy quickly has been an issue and many energy efficient routing protocols have been proposed to solve this problem and preserve the long life of the network. This paper work proposes a hierarchical based node activation routing technique which shows energy efficiency. This technique selects cluster head with highest residual energy in each communication round of transmission to the base station from the cluster heads. Hierarchical based node activation routing technique with different levels of hierarchy simulation results prolongs the lifetime of the network compared to other clustering schemes and communication rounds of simulation increase significantly.