期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Short-pulse laser-driven x-ray radiography 被引量:3
1
作者 E.Brambrink S.Baton +17 位作者 M.Koenig R.Yurchak n.Bidaut B.Albertazzi J.E.Cross G.Gregori A.Rigby E.Falize A.Pelka F.Kroll S.Pikuz Y.Sakawa n.ozaki C.Kuranz M.Manuel C.Li P.Tzeferacos D.Lamb 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2016年第3期101-105,共5页
We have developed a new radiography setup with a short-pulse laser-driven x-ray source. Using a radiography axis perpendicular to both long- and short-pulse lasers allowed optimizing the incident angle of the short-pu... We have developed a new radiography setup with a short-pulse laser-driven x-ray source. Using a radiography axis perpendicular to both long- and short-pulse lasers allowed optimizing the incident angle of the short-pulse laser on the x-ray source target. The setup has been tested with various x-ray source target materials and different laser wavelengths.Signal to noise ratios are presented as well as achieved spatial resolutions. The high quality of our technique is illustrated on a plasma flow radiograph obtained during a laboratory astrophysics experiment on POLARs. 展开更多
关键词 laboratory astrophysics short-pulse laser x-ray radiography
原文传递
Analytical modelling of the expansion of a solid obstacle interacting with a radiative shock
2
作者 Th.Michel E.Falize +19 位作者 B.Albertazzi G.Rigon Y.Sakawa T.Sano H.Shimogawara R.Kumar T.Morita C.Michaut A.Casner R Barroso P.Mabey Y.Kuramitsu S.Laffite L.Van Box Som G.Gregori R.Kodama n.ozaki P.Tzeferacos D.Lamb M.Koenig 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2018年第2期123-132,共10页
In this paper, we present a model characterizing the interaction of a radiative shock(RS) with a solid material, as described in a recent paper(Koenig et al., Phys. Plasmas, 24, 082707(2017)), the new model is then re... In this paper, we present a model characterizing the interaction of a radiative shock(RS) with a solid material, as described in a recent paper(Koenig et al., Phys. Plasmas, 24, 082707(2017)), the new model is then related to recent experiments performed on the GEKKO XII laser facility. The RS generated in a xenon gas cell propagates towards a solid obstacle that is ablated by radiation coming from the shock front and the radiative precursor, mimicking processes occurring in astrophysical phenomena. The model presented here calculates the dynamics of the obstacle expansion,which depends on several parameters, notably the geometry and the temperature of the shock. All parameters required for the model have been obtained from experiments. Good agreement between experimental data and the model is found when spherical geometry is taken into account. As a consequence, this model is a useful and easy tool to infer parameters from experimental data(such as the shock temperature), and also to design future experiments. 展开更多
关键词 high energy density physics laser–plasmas interaction modelling plasmas astrophysics plasma physics radiative hydrodynamics radiative shock
原文传递
Multibeam laser-plasma interaction at the Gekko XII laser facility in conditions relevant for direct-drive inertial confinement fusion
3
作者 G.Cristoforetti P.Koester +20 位作者 S.Atzeni D.Batani S.Fujioka Y.Hironaka S.Hüller T.Idesaka K.Katagiri K.Kawasaki R.Kodama D.Mancelli Ph.nicolai n.ozaki A.Schiavi K.Shigemori R.Takizawa T.Tamagawa D.Tanaka A.Tentori Y.Umeda A.Yogo L.A.Gizzi 《High Power Laser Science and Engineering》 SCIE EI CAS CSCD 2023年第2期70-80,共11页
Laser–plasma interaction and hot electrons have been characterized in detail in laser irradiation conditions relevant for direct-drive inertial confinement fusion.The experiment was carried out at the Gekko XII laser... Laser–plasma interaction and hot electrons have been characterized in detail in laser irradiation conditions relevant for direct-drive inertial confinement fusion.The experiment was carried out at the Gekko XII laser facility in multibeam planar target geometry at an intensity of approximately 3×10^(15)W/cm^(2).Experimental data suggest that high-energy electrons,with temperatures of 20–50 keV and conversion efficiencies ofη<1%,were mainly produced by the damping of electron plasma waves driven by two-plasmon decay(TPD).Stimulated Raman scattering(SRS)is observed in a near-threshold growth regime,producing a reflectivity of approximately 0.01%,and is well described by an analytical model accounting for the convective growth in independent speckles.The experiment reveals that both TPD and SRS are collectively driven by multiple beams,resulting in a more vigorous growth than that driven by single-beam laser intensity. 展开更多
关键词 inertial confinement fusion laser plasma interaction parametric instabilities
原文传递
Triggering star formation:Experimental compression of a foam ball induced by Taylor–Sedov blast waves 被引量:1
4
作者 B.Albertazzi P.Mabey +10 位作者 Th.Michel G.Rigon, J.R.Marques S.Pikuz S.Ryazantsev E.Falize L.Van Box Som J.Meinecke n.ozaki G.Gregori M.Koenig 《Matter and Radiation at Extremes》 SCIE EI CAS CSCD 2022年第3期31-39,共9页
The interaction between a molecular cloud and an external agent(e.g.,a supernova remnant,plasma jet,radiation,or another cloud)is a common phenomenon throughout the Universe and can significantly change the star forma... The interaction between a molecular cloud and an external agent(e.g.,a supernova remnant,plasma jet,radiation,or another cloud)is a common phenomenon throughout the Universe and can significantly change the star formation rate within a galaxy.This process leads to fragmentation of the cloud and to its subsequent compression and can,eventually,initiate the gravitational collapse of a stable molecular cloud.It is,however,difficult to study such systems in detail using conventional techniques(numerical simulations and astronomical observations),since complex interactions of flows occur.In this paper,we experimentally investigate the compression of a foam ball by Taylor–Sedov blast waves,as an analog of supernova remnants interacting with a molecular cloud.The formation of a compression wave is observed in the foam ball,indicating the importance of such experiments for understanding how star formation is triggered by external agents. 展开更多
关键词 CLOUD GALAXY SUPERNOVA
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部