We have developed a new radiography setup with a short-pulse laser-driven x-ray source. Using a radiography axis perpendicular to both long- and short-pulse lasers allowed optimizing the incident angle of the short-pu...We have developed a new radiography setup with a short-pulse laser-driven x-ray source. Using a radiography axis perpendicular to both long- and short-pulse lasers allowed optimizing the incident angle of the short-pulse laser on the x-ray source target. The setup has been tested with various x-ray source target materials and different laser wavelengths.Signal to noise ratios are presented as well as achieved spatial resolutions. The high quality of our technique is illustrated on a plasma flow radiograph obtained during a laboratory astrophysics experiment on POLARs.展开更多
In this paper, we present a model characterizing the interaction of a radiative shock(RS) with a solid material, as described in a recent paper(Koenig et al., Phys. Plasmas, 24, 082707(2017)), the new model is then re...In this paper, we present a model characterizing the interaction of a radiative shock(RS) with a solid material, as described in a recent paper(Koenig et al., Phys. Plasmas, 24, 082707(2017)), the new model is then related to recent experiments performed on the GEKKO XII laser facility. The RS generated in a xenon gas cell propagates towards a solid obstacle that is ablated by radiation coming from the shock front and the radiative precursor, mimicking processes occurring in astrophysical phenomena. The model presented here calculates the dynamics of the obstacle expansion,which depends on several parameters, notably the geometry and the temperature of the shock. All parameters required for the model have been obtained from experiments. Good agreement between experimental data and the model is found when spherical geometry is taken into account. As a consequence, this model is a useful and easy tool to infer parameters from experimental data(such as the shock temperature), and also to design future experiments.展开更多
Laser–plasma interaction and hot electrons have been characterized in detail in laser irradiation conditions relevant for direct-drive inertial confinement fusion.The experiment was carried out at the Gekko XII laser...Laser–plasma interaction and hot electrons have been characterized in detail in laser irradiation conditions relevant for direct-drive inertial confinement fusion.The experiment was carried out at the Gekko XII laser facility in multibeam planar target geometry at an intensity of approximately 3×10^(15)W/cm^(2).Experimental data suggest that high-energy electrons,with temperatures of 20–50 keV and conversion efficiencies ofη<1%,were mainly produced by the damping of electron plasma waves driven by two-plasmon decay(TPD).Stimulated Raman scattering(SRS)is observed in a near-threshold growth regime,producing a reflectivity of approximately 0.01%,and is well described by an analytical model accounting for the convective growth in independent speckles.The experiment reveals that both TPD and SRS are collectively driven by multiple beams,resulting in a more vigorous growth than that driven by single-beam laser intensity.展开更多
The interaction between a molecular cloud and an external agent(e.g.,a supernova remnant,plasma jet,radiation,or another cloud)is a common phenomenon throughout the Universe and can significantly change the star forma...The interaction between a molecular cloud and an external agent(e.g.,a supernova remnant,plasma jet,radiation,or another cloud)is a common phenomenon throughout the Universe and can significantly change the star formation rate within a galaxy.This process leads to fragmentation of the cloud and to its subsequent compression and can,eventually,initiate the gravitational collapse of a stable molecular cloud.It is,however,difficult to study such systems in detail using conventional techniques(numerical simulations and astronomical observations),since complex interactions of flows occur.In this paper,we experimentally investigate the compression of a foam ball by Taylor–Sedov blast waves,as an analog of supernova remnants interacting with a molecular cloud.The formation of a compression wave is observed in the foam ball,indicating the importance of such experiments for understanding how star formation is triggered by external agents.展开更多
基金the support of RFBR grant 14-29-06099Competitiveness Programme of NRNU MEPhI
文摘We have developed a new radiography setup with a short-pulse laser-driven x-ray source. Using a radiography axis perpendicular to both long- and short-pulse lasers allowed optimizing the incident angle of the short-pulse laser on the x-ray source target. The setup has been tested with various x-ray source target materials and different laser wavelengths.Signal to noise ratios are presented as well as achieved spatial resolutions. The high quality of our technique is illustrated on a plasma flow radiograph obtained during a laboratory astrophysics experiment on POLARs.
基金supported by the Scientific Council of the Observatoire de Parisby COST(European COoperation in Science and Technology),action MP1208,with a Short-Term Scientific Mission
文摘In this paper, we present a model characterizing the interaction of a radiative shock(RS) with a solid material, as described in a recent paper(Koenig et al., Phys. Plasmas, 24, 082707(2017)), the new model is then related to recent experiments performed on the GEKKO XII laser facility. The RS generated in a xenon gas cell propagates towards a solid obstacle that is ablated by radiation coming from the shock front and the radiative precursor, mimicking processes occurring in astrophysical phenomena. The model presented here calculates the dynamics of the obstacle expansion,which depends on several parameters, notably the geometry and the temperature of the shock. All parameters required for the model have been obtained from experiments. Good agreement between experimental data and the model is found when spherical geometry is taken into account. As a consequence, this model is a useful and easy tool to infer parameters from experimental data(such as the shock temperature), and also to design future experiments.
基金This work was carried out within the framework of the EUROfusion Consortium,funded by the European Union via the Euratom Research and Training Programme(Grant Agreement No.101052200–EUROfusion)The views and opinions expressed are however those of the author(s)only and do not necessarily reflect those of the European Union or the European Commission.Neither the European Union nor the European Commission can be held responsible for them.The involved teams have operated within the framework of the Enabling Research Project:ENR-IFE.01.CEA‘Advancing shock ignition for direct-drive inertial fusion’This work was also done with the support and under the auspices of the NIFS Collaboration Research program(2021NIFS18KUGK123).
文摘Laser–plasma interaction and hot electrons have been characterized in detail in laser irradiation conditions relevant for direct-drive inertial confinement fusion.The experiment was carried out at the Gekko XII laser facility in multibeam planar target geometry at an intensity of approximately 3×10^(15)W/cm^(2).Experimental data suggest that high-energy electrons,with temperatures of 20–50 keV and conversion efficiencies ofη<1%,were mainly produced by the damping of electron plasma waves driven by two-plasmon decay(TPD).Stimulated Raman scattering(SRS)is observed in a near-threshold growth regime,producing a reflectivity of approximately 0.01%,and is well described by an analytical model accounting for the convective growth in independent speckles.The experiment reveals that both TPD and SRS are collectively driven by multiple beams,resulting in a more vigorous growth than that driven by single-beam laser intensity.
基金the support of Investissements d’Avenir of LabEx PALM(Grant No.ANR-10-LABX-0039-PALM)the Ministry of Science and Higher Education of the Russian Federation(Agreement with Joint Institute for High Temperatures RAS No.075-15-2020-785)G.G.acknowledges support from the UK EPSRC(Grant Nos.EP/M022331/1 and EP/N014472/1)。
文摘The interaction between a molecular cloud and an external agent(e.g.,a supernova remnant,plasma jet,radiation,or another cloud)is a common phenomenon throughout the Universe and can significantly change the star formation rate within a galaxy.This process leads to fragmentation of the cloud and to its subsequent compression and can,eventually,initiate the gravitational collapse of a stable molecular cloud.It is,however,difficult to study such systems in detail using conventional techniques(numerical simulations and astronomical observations),since complex interactions of flows occur.In this paper,we experimentally investigate the compression of a foam ball by Taylor–Sedov blast waves,as an analog of supernova remnants interacting with a molecular cloud.The formation of a compression wave is observed in the foam ball,indicating the importance of such experiments for understanding how star formation is triggered by external agents.