期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Cu-Pd alloy catalyst with partial phase separation for the electrochemical CO_(2) reduction reaction
1
作者 Gyeong Ho Han Jung Yong seo +4 位作者 Minji Kang myung-gi seo Youngheon Choi Soo Young Kim Sang Hyun Ahn 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期8-15,I0001,共9页
Cu catalysts can convert CO_(2) through an electrochemical reduction reaction into a variety of useful carbon-based products.However,this capability provides an obstacle to increasing the selectivity for a single prod... Cu catalysts can convert CO_(2) through an electrochemical reduction reaction into a variety of useful carbon-based products.However,this capability provides an obstacle to increasing the selectivity for a single product.Herein,we report a simple fabrication method for a Cu-Pd alloy catalyst for use in a membrane electrode assembly(MEA)-based CO_(2) electrolyzer for the electrochemical CO_(2) reduction reaction(ECRR)with high selectivity for CO production.When the composition of the Cu-Pd alloy catalyst was fabricated at 6:4,the selectivity for CO increased and the production of multi-carbon compounds and hydrogen is suppressed.Introducing a Cu-Pd alloy catalyst with 6:4 ratio as the cathode of the MEAbased CO_(2) electrolyzer showed a CO faradaic efficiency of 92.8%at 2.4 V_(cell).We assumed that these results contributed from the crystal planes on the surface of the Cu-Pd alloy.The phases of the Cu-Pd alloy catalyst were partially separated through annealing to fabricate a catalyst with high selectivity for CO at low voltage and C_(2)H_4 at high voltage.The results of CO-stripping testing confirmed that when Cu partially separates from the lattice of the Cu-Pd alloy,the desorption of~*CO is suppressed,suggesting that C-C coupling reaction is favored. 展开更多
关键词 Cu-Pd catalyst ELECTRODEPOSITION Electrochemical carbon dioxide reduction Partial phase separation Membrane electrode assembly-based electrolyzer
下载PDF
Crystallographically vacancy‐induced MOF nanosheet as rational single‐atom support for accelerating CO_(2)electroreduction to CO
2
作者 Jin Hyuk Cho Joonhee Ma +12 位作者 Chaehyeon Lee Jin Wook Lim Youngho Kim Ho Yeon Jang Jaehyun Kim myunggi seo Youngheon Choi Youn Jeong Jang Sang Hyun Ahn Ho Won Jang seoin Back Jong‐Lam Lee Soo Young Kim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期49-62,共14页
To attain a circular carbon economy and resolve CO_(2)electroreduction technology obstacles,single‐atom catalysts(SACs)have emerged as a logical option for electrocatalysis because of their extraordinary catalytic ac... To attain a circular carbon economy and resolve CO_(2)electroreduction technology obstacles,single‐atom catalysts(SACs)have emerged as a logical option for electrocatalysis because of their extraordinary catalytic activity.Among SACs,metal–organic frameworks(MOFs)have been recognized as promising support materials because of their exceptional ability to prevent metal aggregation.This study shows that atomically dispersed Ni single atoms on a precisely engineered MOF nanosheet display a high Faradaic efficiency of approximately 100%for CO formation in H‐cell and three‐compartment microfluidic flow‐cell reactors and an excellent turnover frequency of 23,699 h−1,validating their intrinsic catalytic potential.These results suggest that crystallographic variations affect the abundant vacancy sites on the MOF nanosheets,which are linked to the evaporation of Zn‐containing organic linkers during pyrolysis.Furthermore,using X‐ray absorption spectroscopy and density functional theory calculations,a comprehensive investigation of the unsaturated atomic coordination environments and the underlying mechanism involving CO^(*)preadsorbed sites as initial states was possible and provided valuable insights. 展开更多
关键词 2‐dimensional material carbon dioxide reduction metal-organic frameworks single‐atom catalysts vacancy sites
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部