期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
An Appraisal of Land Use/Land Cover Change Scenario of Tummalapalle, Cuddapah Region, India—A Remote Sensing and GIS Perspective 被引量:2
1
作者 Yenamala Sreedhar Arveti Nagaraju Gurram murali krishna 《Advances in Remote Sensing》 2016年第4期232-245,共14页
The study was aimed at appraising the changing land use/land cover scenario of Tummalapalle region in Cuddapah district of Andhra Pradesh using Remote sensing data and GIS technology. The region is considered as it ha... The study was aimed at appraising the changing land use/land cover scenario of Tummalapalle region in Cuddapah district of Andhra Pradesh using Remote sensing data and GIS technology. The region is considered as it has rich uranium reserves and is experiencing a remarkable expansion in recent times. The land use/land cover change analysis was carried out using IRS P6 LISS-III and LANDSAT-8 OLI multitemporal data pertaining to the years 2006 and 2016. The image classification resulted in five major land use/land cover classes namely built-up, agricultural, forest, wasteland and water bodies. The study noticed that the areas under built-up and agricultural classes are found increased from 0.94 km<sup>2</sup> (0.84%) to 2.75 km<sup>2</sup> (2.44%) and 61.68 km<sup>2</sup> (54.84%) to 63.91 km<sup>2</sup> (56.82%), respectively during 2006-2016. Area under forest, wasteland and water bodies are found decreased considerably from 3.09 km<sup>2</sup> (2.75%) to 0.86 km<sup>2</sup> (0.76%), 43.71 km<sup>2</sup> (38.56%) to 42.60 km<sup>2</sup> (37.88%) and 3.05 km<sup>2</sup> (2.71%) to 2.35 km<sup>2</sup> (2.09%), respectively. The study recommends development of industrial based economy by optimally utilizing the existing land resource (scrub and wasteland classes) and simultaneously extending the agricultural practices to other possible areas to make them more productive. 展开更多
关键词 Remote Sensing and GIS Image Classification Land Use/Land Cover Tummalapalle
下载PDF
Weathering the Storm: Mitigating Hurricanes with Ground-Based CCN and Lightning
2
作者 Venkata Chaganti murali krishna Cheruvu 《Journal of Geoscience and Environment Protection》 2023年第12期13-27,共15页
This research introduces a groundbreaking methodology aimed at mitigating storm and hurricane intensity through the application of a ground-based, manually operated Cloud Condensation Nuclei (CCN) Generator. To meet t... This research introduces a groundbreaking methodology aimed at mitigating storm and hurricane intensity through the application of a ground-based, manually operated Cloud Condensation Nuclei (CCN) Generator. To meet the demand for more comprehensive context and rationale, this study explores the escalating challenges presented by the growing intensity of hurricanes, exemplified by Hurricane IAN (2022). The controlled release of environmentally friendly aerosols into the atmosphere, achieved by combusting selected wood pieces and organic edible materials, is a pivotal response to the escalating threat of extreme weather events. By generating CCN, the novel approach seeks to augment positive lightning in the eyewall, providing a potential solution to the intensification of hurricanes. Results illustrate the successful implementation of the methodology, with released aerosols effectively reaching the clouds for seeding, thus contributing to the modification of convection in the outer wall of Hurricane IAN and consequent intensity reduction. Rigorous experiments, incorporating considerations of various parameters such as wind patterns and the experimental location in Sarasota City, emphasize the scientific rigor applied to weakening Hurricane IAN. This comprehensive approach not only holds promise in mitigating hurricane intensity but also sheds light on the potential impact of cloud seeding in reducing the severity of future hurricanes, addressing a critical need for sustainable solutions to climate-related challenges. 展开更多
关键词 IAN 2022 Hurricane Mitigation LIGHTNING AEROSOL Cloud Condensation Nuclei (CCN)
下载PDF
An Experimental Methodology for Storm Mitigation
3
作者 Venkata Chaganti murali krishna Cheruvu 《Atmospheric and Climate Sciences》 CAS 2022年第4期648-678,共31页
There are many theoretical explanations for the mitigation of tornados, storms, and hurricanes and one or two known simulation models that address the reduction of the intensities of these forces. We introduce an inno... There are many theoretical explanations for the mitigation of tornados, storms, and hurricanes and one or two known simulation models that address the reduction of the intensities of these forces. We introduce an innovative methodology that releases environmentally friendly aerosol particles responsible for cloud condensation and weakens the intensities of these forces. For the past nine years, we did several experiments and analyzed the results. Experimental results give evidence to this methodology is practical, environment-friendly, cost-effective, and consistent. In this paper, we described our experiments along with results in three different scenarios such as tornado (March 2021, Georgia USA), storm Claudette (June 2021, Georgia USA), and hurricane Elsa (July 2021, Florida USA). Our experimental outcome and subsequent relevant meteorology data support the reason for mitigating the intensity of these destructive forces in and around the experiment locations. 展开更多
关键词 Storm Mitigation Hurricane Mitigation Tornado Mitigation Claudette 2021 Elsa 2021 AEROSOL
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部