Experiments were conducted to analyze effects of high temperature stress on wheat at pre-anthesis growth stage. Twenty four wheat genotypes exposed to a sub optimal temperature (>35°C) which showed altered phy...Experiments were conducted to analyze effects of high temperature stress on wheat at pre-anthesis growth stage. Twenty four wheat genotypes exposed to a sub optimal temperature (>35°C) which showed altered physiological, biochemical and agronomic characteristics. Accumulation of proline, presence of new protein bands and higher antioxidant enzyme activity in leaves of G.7 and G.17 reflects their better adaptive response under heat stress conditions. G.17 and G.19 showed least reduction in number of spikelets per spike, biological yield and 100 grain weight. It was inferred that the genotypes G.7, G.17 and G.19 exhibited greater heat tolerance and could be recommended for cultivation under heat stress conditions.展开更多
文摘Experiments were conducted to analyze effects of high temperature stress on wheat at pre-anthesis growth stage. Twenty four wheat genotypes exposed to a sub optimal temperature (>35°C) which showed altered physiological, biochemical and agronomic characteristics. Accumulation of proline, presence of new protein bands and higher antioxidant enzyme activity in leaves of G.7 and G.17 reflects their better adaptive response under heat stress conditions. G.17 and G.19 showed least reduction in number of spikelets per spike, biological yield and 100 grain weight. It was inferred that the genotypes G.7, G.17 and G.19 exhibited greater heat tolerance and could be recommended for cultivation under heat stress conditions.