The intrinsic drawbacks of electrolytes and the growth of lithium dendrites limit the development of commercial lithium batteries.To address the aforementioned challenges,a novel biomimetic brain-like nanostructure(BB...The intrinsic drawbacks of electrolytes and the growth of lithium dendrites limit the development of commercial lithium batteries.To address the aforementioned challenges,a novel biomimetic brain-like nanostructure(BBLN)solid polymer electrolyte was created by manipulating the shape of the incorporated nanoparticles.Our designed BBLN solid polymer electrolyte was created by incorporating spherical core-shell(UIO-66@67)fillers into polymer electrolyte,which is significantly different from traditional polymer-based composite electrolytes.UIO-66@67 spherical nanoparticles are highly favorable to eliminating polymer electrolyte stress and deformation during solidification,indicating a great potential for fabricating highly uniform BBLN solid polymer electrolytes with a substantial number of continuous convolutions.Furthermore,spherical nanoparticles can significantly reduce the crystalline structure of polymer electrolytes,improving polymer chain segmental movement and providing continuous pathways for rapid ion transfer.As a result,BBLN solid polymer electrolyte shows excellent ionic conductivity(9.2×10^(−4)S cm^(−1)),a high lithium transference number(0.74),and outstanding cycle stability against lithium electrodes over 6500 h at room temperature.The concept of biomimetic brain-like nanostructures in this work demonstrates a novel strategy to enhance ion transport in polymerbased electrolytes for solid-state batteries.展开更多
Parasitization has an enormous impact on host physiology, development and reproduction. The effect of parasitism by endoparasitoid, Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae) on survival and reproduction of m...Parasitization has an enormous impact on host physiology, development and reproduction. The effect of parasitism by endoparasitoid, Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae) on survival and reproduction of mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) on different host stages was studied. Our data reveals that host mealybugs parasitized by the wasp at the 2<sup>nd</sup> instar stage were died during the 3<sup>rd</sup> instar stage of their life. However, those parasitized at the 3<sup>rd</sup> instar stage could reach the adult stage and were able to produce their progeny. After 6 days of parasitization, all parasitized hosts of the 2<sup>nd</sup>, 3<sup>rd</sup> and adult stages were died except the 1<sup>st</sup> instar. Results showed that parasitized host mealybugs had significantly lower reproductive potential than the unparasitized ones. Maximum parasitoid emergence was recorded in the 3<sup>rd</sup> instar host stage. This basic research regarding survival and reproduction of the parasitized host mealybugs would be very helpful in devising sustainable biological control strategies for cotton mealybug.展开更多
The ceramic composites of sodium bismuth titanate with reduce graphene oxide NBT/rGO of different compositions were fabricated by solid state sintering method and characterized. In this work, the graphene oxide (GO) a...The ceramic composites of sodium bismuth titanate with reduce graphene oxide NBT/rGO of different compositions were fabricated by solid state sintering method and characterized. In this work, the graphene oxide (GO) and reduce graphene oxide (rGO) was successfully synthesized by Hummer’s modified method which is confirmed by FTIR and XRD results. The reduce graphene oxide used as 2D filler in piezoelectric creamic material. The crystalline structure of NBT/rGO composite was confirmed by X-ray diffraction with rhombohedral symmetry. The dispersion of rGO in the ceramic can be detect by the optical microcopy images. The electrical conductivity of sodium bismuth titanate shows increase at higher values of frequency and conductivity nanocomposites of different wt% were start decreases up to certain value of frequency. The broadening of peaks in frequency explicit plots of electrical conductivity with the help of LCR Meter (Impedance Capacitance and Resistance). The crystalline size of reduced graphene oxide and NBT is calculated by Scherrer’s formula of XRD peaks.展开更多
The exchange bias is of technological significance in magnetic recording and spintronic devices.Pursuing a large bias field is a long-term goal for the research field of magnetic shape memory alloys.In this work,a lar...The exchange bias is of technological significance in magnetic recording and spintronic devices.Pursuing a large bias field is a long-term goal for the research field of magnetic shape memory alloys.In this work,a large bias field of 0.53 T is achieved in the Ni50Mn34In16-xFex(x=1,3,5)system by tuning the magnetic ground state(determined by the composition x)and the magnetic-field history(determined by the magnetic field HFCduring field cooling and the maximum field HMaxduring isothermal magnetization).The maximum volume fraction of the interfaces between the ferromagnetic clusters and antiferromagnetic matrix and the strong interfacial interaction are achieved by tuning the magnetic ground state and the magnetic-field history,which results in strong magnetic unidirectional anisotropy and the large exchange bias.Moreover,two guidelines were proposed to obtain the large bias field.Firstly,the composition with a magnetic ground state consisting of the dilute spin glass and the strong antiferromagnetic matrix is preferred to obtain a large bias field;secondly,tuning the magnetic-field history by enhancing HFCand reducing HMaxis beneficial to achieving large exchange bias.Our work provides an effective way for designing magnetically inhomogeneous compounds with large exchange bias.展开更多
Herbal medicines have been gaining popularity worldwide. They are an integral component of alternative medical care and provide a rich source for innovative drug discovery. However, the rapid increase in the demand fo...Herbal medicines have been gaining popularity worldwide. They are an integral component of alternative medical care and provide a rich source for innovative drug discovery. However, the rapid increase in the demand for herbal medicines and products has led to the rapid depletion of herbal plants. In addition, rapid population growth, industrialization, and global climate change have endangered these medicinal plants. Given the imminent threat associated with the loss of medicinal plant diversity, this review highlights the need to protect these threatened plant species and avoid the loss of their therapeutic value. The aim of the study was to conserve resources and link them with current research activities and projects to develop novel and more effective drugs in the future.展开更多
基金supported by the National Natural Science Foundation of China(51802239 and 52127816)the National Key Research and Development Program of China(2020YFA0715000)+2 种基金the Key Research and Development Program of Hubei Province(2021BAA070)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-005)the Fundamental Research Funds for the Central Universities(2020Ⅲ011GX,2020ⅣB057,2019ⅣB054 and 2019Ⅲ062JL)。
文摘The intrinsic drawbacks of electrolytes and the growth of lithium dendrites limit the development of commercial lithium batteries.To address the aforementioned challenges,a novel biomimetic brain-like nanostructure(BBLN)solid polymer electrolyte was created by manipulating the shape of the incorporated nanoparticles.Our designed BBLN solid polymer electrolyte was created by incorporating spherical core-shell(UIO-66@67)fillers into polymer electrolyte,which is significantly different from traditional polymer-based composite electrolytes.UIO-66@67 spherical nanoparticles are highly favorable to eliminating polymer electrolyte stress and deformation during solidification,indicating a great potential for fabricating highly uniform BBLN solid polymer electrolytes with a substantial number of continuous convolutions.Furthermore,spherical nanoparticles can significantly reduce the crystalline structure of polymer electrolytes,improving polymer chain segmental movement and providing continuous pathways for rapid ion transfer.As a result,BBLN solid polymer electrolyte shows excellent ionic conductivity(9.2×10^(−4)S cm^(−1)),a high lithium transference number(0.74),and outstanding cycle stability against lithium electrodes over 6500 h at room temperature.The concept of biomimetic brain-like nanostructures in this work demonstrates a novel strategy to enhance ion transport in polymerbased electrolytes for solid-state batteries.
文摘Parasitization has an enormous impact on host physiology, development and reproduction. The effect of parasitism by endoparasitoid, Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae) on survival and reproduction of mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) on different host stages was studied. Our data reveals that host mealybugs parasitized by the wasp at the 2<sup>nd</sup> instar stage were died during the 3<sup>rd</sup> instar stage of their life. However, those parasitized at the 3<sup>rd</sup> instar stage could reach the adult stage and were able to produce their progeny. After 6 days of parasitization, all parasitized hosts of the 2<sup>nd</sup>, 3<sup>rd</sup> and adult stages were died except the 1<sup>st</sup> instar. Results showed that parasitized host mealybugs had significantly lower reproductive potential than the unparasitized ones. Maximum parasitoid emergence was recorded in the 3<sup>rd</sup> instar host stage. This basic research regarding survival and reproduction of the parasitized host mealybugs would be very helpful in devising sustainable biological control strategies for cotton mealybug.
文摘The ceramic composites of sodium bismuth titanate with reduce graphene oxide NBT/rGO of different compositions were fabricated by solid state sintering method and characterized. In this work, the graphene oxide (GO) and reduce graphene oxide (rGO) was successfully synthesized by Hummer’s modified method which is confirmed by FTIR and XRD results. The reduce graphene oxide used as 2D filler in piezoelectric creamic material. The crystalline structure of NBT/rGO composite was confirmed by X-ray diffraction with rhombohedral symmetry. The dispersion of rGO in the ceramic can be detect by the optical microcopy images. The electrical conductivity of sodium bismuth titanate shows increase at higher values of frequency and conductivity nanocomposites of different wt% were start decreases up to certain value of frequency. The broadening of peaks in frequency explicit plots of electrical conductivity with the help of LCR Meter (Impedance Capacitance and Resistance). The crystalline size of reduced graphene oxide and NBT is calculated by Scherrer’s formula of XRD peaks.
基金supported by the National Natural Science Foundation of China(51471127,51431007 and 51371134)the Program for Young Scientific New-star in Shaanxi Province of China(2014KJXX-35)+2 种基金the Innovation Capability Support Program of Shaanxi(2018PT-28 and 2017KTPT-04)Shenzhen Science and Technology Project(JCYJ20180507182246321)the Fundamental Research Funds for Central Universities of China。
文摘The exchange bias is of technological significance in magnetic recording and spintronic devices.Pursuing a large bias field is a long-term goal for the research field of magnetic shape memory alloys.In this work,a large bias field of 0.53 T is achieved in the Ni50Mn34In16-xFex(x=1,3,5)system by tuning the magnetic ground state(determined by the composition x)and the magnetic-field history(determined by the magnetic field HFCduring field cooling and the maximum field HMaxduring isothermal magnetization).The maximum volume fraction of the interfaces between the ferromagnetic clusters and antiferromagnetic matrix and the strong interfacial interaction are achieved by tuning the magnetic ground state and the magnetic-field history,which results in strong magnetic unidirectional anisotropy and the large exchange bias.Moreover,two guidelines were proposed to obtain the large bias field.Firstly,the composition with a magnetic ground state consisting of the dilute spin glass and the strong antiferromagnetic matrix is preferred to obtain a large bias field;secondly,tuning the magnetic-field history by enhancing HFCand reducing HMaxis beneficial to achieving large exchange bias.Our work provides an effective way for designing magnetically inhomogeneous compounds with large exchange bias.
文摘Herbal medicines have been gaining popularity worldwide. They are an integral component of alternative medical care and provide a rich source for innovative drug discovery. However, the rapid increase in the demand for herbal medicines and products has led to the rapid depletion of herbal plants. In addition, rapid population growth, industrialization, and global climate change have endangered these medicinal plants. Given the imminent threat associated with the loss of medicinal plant diversity, this review highlights the need to protect these threatened plant species and avoid the loss of their therapeutic value. The aim of the study was to conserve resources and link them with current research activities and projects to develop novel and more effective drugs in the future.