To improve the start-up speed and efficiency of bioreactors, biofilm technology is sometimes used. This technology uses various types of materials to facilitate the adhesion of microorganisms. In this study, the surfa...To improve the start-up speed and efficiency of bioreactors, biofilm technology is sometimes used. This technology uses various types of materials to facilitate the adhesion of microorganisms. In this study, the surface characteris<span style="font-family:Verdana;">tics of inert substrates and substrates after olive oil-mill wastewater (OMWW)</span><span style="font-family:Verdana;"> conditioning film were evaluated to understand the impact of OMWW on adhesion as well as the most suitable material to optimize bacterial adhesion. Three common substrates made of different polymers were tested for bacterial adhesion before and after treatment with OMWW: PP (polypropylene), PET (Polyethylene terephthalate), and PVC (polyvinyl chloride). The </span><span style="font-family:Verdana;">surfaces’ physicochemical characteristics were studied by measuring the contact angle for the studied bacteria strain and the supports, before and after treatment with OMWW. Results of initial adhesion tests for untreated and treated supports showed differences in how bacterial cells adhered to substrates. Before treatment with OMWW, PVC and then PP showed a significant adhesion capacity, double that of PET [PVC: 1.58</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, PP: 1.48</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> and PET: 0.72</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family:展开更多
文摘To improve the start-up speed and efficiency of bioreactors, biofilm technology is sometimes used. This technology uses various types of materials to facilitate the adhesion of microorganisms. In this study, the surface characteris<span style="font-family:Verdana;">tics of inert substrates and substrates after olive oil-mill wastewater (OMWW)</span><span style="font-family:Verdana;"> conditioning film were evaluated to understand the impact of OMWW on adhesion as well as the most suitable material to optimize bacterial adhesion. Three common substrates made of different polymers were tested for bacterial adhesion before and after treatment with OMWW: PP (polypropylene), PET (Polyethylene terephthalate), and PVC (polyvinyl chloride). The </span><span style="font-family:Verdana;">surfaces’ physicochemical characteristics were studied by measuring the contact angle for the studied bacteria strain and the supports, before and after treatment with OMWW. Results of initial adhesion tests for untreated and treated supports showed differences in how bacterial cells adhered to substrates. Before treatment with OMWW, PVC and then PP showed a significant adhesion capacity, double that of PET [PVC: 1.58</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, PP: 1.48</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;"> CFU/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> and PET: 0.72</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">× 10</span><sup><span style="font-family: