期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Prediction of lattice thermal conductivity with two-stage interpretable machine learning
1
作者 胡锦龙 左钰婷 +10 位作者 郝昱州 舒国钰 王洋 冯敏轩 李雪洁 王晓莹 孙军 丁向东 高志斌 朱桂妹 李保文 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期11-18,共8页
Thermoelectric and thermal materials are essential in achieving carbon neutrality. However, the high cost of lattice thermal conductivity calculations and the limited applicability of classical physical models have le... Thermoelectric and thermal materials are essential in achieving carbon neutrality. However, the high cost of lattice thermal conductivity calculations and the limited applicability of classical physical models have led to the inefficient development of thermoelectric materials. In this study, we proposed a two-stage machine learning framework with physical interpretability incorporating domain knowledge to calculate high/low thermal conductivity rapidly. Specifically, crystal graph convolutional neural network(CGCNN) is constructed to predict the fundamental physical parameters related to lattice thermal conductivity. Based on the above physical parameters, an interpretable machine learning model–sure independence screening and sparsifying operator(SISSO), is trained to predict the lattice thermal conductivity. We have predicted the lattice thermal conductivity of all available materials in the open quantum materials database(OQMD)(https://www.oqmd.org/). The proposed approach guides the next step of searching for materials with ultra-high or ultralow lattice thermal conductivity and promotes the development of new thermal insulation materials and thermoelectric materials. 展开更多
关键词 low lattice thermal conductivity interpretable machine learning thermoelectric materials physical domain knowledge
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部