In the femtosecond two-photon polymerization(2PP)experimental system,optical aberrations degrade the fabrication quality.To solve this issue,a multichannel interferometric wavefront sensing technique is adopted in the...In the femtosecond two-photon polymerization(2PP)experimental system,optical aberrations degrade the fabrication quality.To solve this issue,a multichannel interferometric wavefront sensing technique is adopted in the adaptive laser processing system with a single phase-only spatial light modulator.2PP fabrications using corrected high-order Bessel beams with the above solution have been conducted,and high-quality microstructure arrays of microtubes with 20μm diameter have been rapidly manufactured.The effectiveness of the proposed scheme is demonstrated by comparing the beam intensity distributions and 2PP results before and after aberration corrections.展开更多
The manipulation of structured light beams requires simultaneous spatial modulation of amplitude and phase.Based on the double-phase holography(DPH)algorithm,we demonstrate an efficient reconstruction of Bessel beams ...The manipulation of structured light beams requires simultaneous spatial modulation of amplitude and phase.Based on the double-phase holography(DPH)algorithm,we demonstrate an efficient reconstruction of Bessel beams with arbitrary onaxis intensity.Also,the off-axis DPH method enables more than doubled laser energy utilization compared with the widelyused off-axis phase wrapping modulation method.The DPH algorithm is also used in two-photon polymerization to enable the rapid fabrication of microtube arrays,ortho-hexagonal scaffolds,and 2D patterned microstructures.This work gives experimental proof to show the powerful feasibility of the DPH method in constructing economic adaptive laser processing systems.展开更多
As a newly discovered type of structured light,a spatiotemporal optical vortex(STOV),which is remarkable for its space–time spiral phase and transverse orbital angular momentum(OAM),has garnered substantial interest....As a newly discovered type of structured light,a spatiotemporal optical vortex(STOV),which is remarkable for its space–time spiral phase and transverse orbital angular momentum(OAM),has garnered substantial interest.Most previous studies have focused on the generation,characterization,and propagation of STOVs,but their nonlinear frequency conversion remains largely unexplored.Here,we experimentally demonstrate the generation of green and ultraviolet(UV)STOVs by frequency upconversion of a STOV carried near-infrared(NIR)pulse emitted by a high repetition rate Yb-doped fiber laser amplifier system.First,we verify that the topological charge of spatiotemporal OAM(ST-OAM)is doubled along with the optical frequency in the second-harmonic generation(SHG)process,which is visualized by the diffraction patterns of the STOVs in the fundamental and second-harmonic field.Second,the space–time characteristic of NIR STOV is successfully mapped to UV STOV by sum-frequency mixing STOV at 1037 nm and Gaussian beams in the green band.Furthermore,we observe the topological charges of the ST-OAM could be degraded owing to strong space–time coupling and complex spatiotemporal astigmatism of such beams.Our results not only deepen our understanding of nonlinear manipulation of STOAM spectra and the generation of STOVs at a new shorter wavelength,but also may promote new applications in both classical and quantum optics.展开更多
High-order dispersion introduced by Gires–Tournois interferometer mirrors usually causes spectral sidebands in the nearzero dispersion region of mode-locked fiber lasers.Here,we demonstrate a sideband-free Yb-doped m...High-order dispersion introduced by Gires–Tournois interferometer mirrors usually causes spectral sidebands in the nearzero dispersion region of mode-locked fiber lasers.Here,we demonstrate a sideband-free Yb-doped mode-locked fiber laser with dispersion-compensating Gires–Tournois interferometer mirrors.Both the simulation and the experiment demonstrate that the wavelength and energy of the sidebands can be tuned by changing the transmission coefficient of the output mirror,the pump power,and the ratio of the net cavity dispersion to the net third-order dispersion in the cavity.By optimizing these three parameters,the laser can generate a sideband-free,Gaussian-shaped spectrum with a 13.56-nm bandwidth at-0.0232 ps^(2)net cavity dispersion,which corresponds to a 153-fs pulse duration.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62275191,61605142,and 61827821)the Tianjin Research Program of Application FoundationandAdvancedTechnologyofChina(No.17JCJQJC43500)+2 种基金the Open Fund of the State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciencesthe European Research Council(No.682032-PULSAR)the Agence Nationale de la Recherche(Nos.ANR-15-IDEX0003 and ANR-17-EURE-0002)。
文摘In the femtosecond two-photon polymerization(2PP)experimental system,optical aberrations degrade the fabrication quality.To solve this issue,a multichannel interferometric wavefront sensing technique is adopted in the adaptive laser processing system with a single phase-only spatial light modulator.2PP fabrications using corrected high-order Bessel beams with the above solution have been conducted,and high-quality microstructure arrays of microtubes with 20μm diameter have been rapidly manufactured.The effectiveness of the proposed scheme is demonstrated by comparing the beam intensity distributions and 2PP results before and after aberration corrections.
基金supported by the National Natural Science Foundation of China(Nos.62275191,61605142,and 61827821)the Tianjin Research Program of Application Foundation and Advanced Technology of China(No.17JCJQJC43500)the Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences(Open Fund of the State Key Laboratory of High Field Laser Physics)。
文摘The manipulation of structured light beams requires simultaneous spatial modulation of amplitude and phase.Based on the double-phase holography(DPH)algorithm,we demonstrate an efficient reconstruction of Bessel beams with arbitrary onaxis intensity.Also,the off-axis DPH method enables more than doubled laser energy utilization compared with the widelyused off-axis phase wrapping modulation method.The DPH algorithm is also used in two-photon polymerization to enable the rapid fabrication of microtube arrays,ortho-hexagonal scaffolds,and 2D patterned microstructures.This work gives experimental proof to show the powerful feasibility of the DPH method in constructing economic adaptive laser processing systems.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.62105237,61827821,and 62227821).
文摘As a newly discovered type of structured light,a spatiotemporal optical vortex(STOV),which is remarkable for its space–time spiral phase and transverse orbital angular momentum(OAM),has garnered substantial interest.Most previous studies have focused on the generation,characterization,and propagation of STOVs,but their nonlinear frequency conversion remains largely unexplored.Here,we experimentally demonstrate the generation of green and ultraviolet(UV)STOVs by frequency upconversion of a STOV carried near-infrared(NIR)pulse emitted by a high repetition rate Yb-doped fiber laser amplifier system.First,we verify that the topological charge of spatiotemporal OAM(ST-OAM)is doubled along with the optical frequency in the second-harmonic generation(SHG)process,which is visualized by the diffraction patterns of the STOVs in the fundamental and second-harmonic field.Second,the space–time characteristic of NIR STOV is successfully mapped to UV STOV by sum-frequency mixing STOV at 1037 nm and Gaussian beams in the green band.Furthermore,we observe the topological charges of the ST-OAM could be degraded owing to strong space–time coupling and complex spatiotemporal astigmatism of such beams.Our results not only deepen our understanding of nonlinear manipulation of STOAM spectra and the generation of STOVs at a new shorter wavelength,but also may promote new applications in both classical and quantum optics.
基金partially supported by the National Key Research and Development Program of China(No.2021YFB3602600)the Research and Development Program in Key Areas of Guangdong Province,China(No.2020B090922004)。
文摘High-order dispersion introduced by Gires–Tournois interferometer mirrors usually causes spectral sidebands in the nearzero dispersion region of mode-locked fiber lasers.Here,we demonstrate a sideband-free Yb-doped mode-locked fiber laser with dispersion-compensating Gires–Tournois interferometer mirrors.Both the simulation and the experiment demonstrate that the wavelength and energy of the sidebands can be tuned by changing the transmission coefficient of the output mirror,the pump power,and the ratio of the net cavity dispersion to the net third-order dispersion in the cavity.By optimizing these three parameters,the laser can generate a sideband-free,Gaussian-shaped spectrum with a 13.56-nm bandwidth at-0.0232 ps^(2)net cavity dispersion,which corresponds to a 153-fs pulse duration.