We systematically investigate in-plane transport properties of ternary chalcogenideBi_(2)Rh_(3)Se_(2).Upon rotating the magnetic field within the plane of the sample, one can distinctly detect the presence of both pla...We systematically investigate in-plane transport properties of ternary chalcogenideBi_(2)Rh_(3)Se_(2).Upon rotating the magnetic field within the plane of the sample, one can distinctly detect the presence of both planar Hall resistance and anisotropic longitudinal resistance, and the phenomena appeared are precisely described by the theoretical formulation of the planar Hall effect (PHE). In addition, anisotropic orbital magnetoresistance rather than topologically nontrivial chiral anomalies dominates the PHE in Bi_(2)Rh_(3)Se_(2). The finding not only provides another platform for understanding the mechanism of PHE, but could also be beneficial for future planar Hall sensors based on two-dimensional materials.展开更多
We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magne...We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magnetoresistance without any sign of saturation with a magnetic field up to 30T. We also observe a phase transition with significant anomalies in resistivity and heat capacity at T_(p)~140 K. Thermal expansion measurement reveals a subtle lattice parameter variation near Tp, i.e.,?L_(c)/L_(c)~0.062%. The structural characterization confines that there is no structure transition below and above T_(p). All these results suggest that the nonmagnetic transition of SrCu_(4-x)P_(2) could be associated with structural distortion.展开更多
We report comprehensive transport, electron microscopy and Raman spectroscopy studies on transition-metal chalcogenides Cu1.89Te single crystals. The metallic Cu1.89Te displays successive metal-semiconductor transitio...We report comprehensive transport, electron microscopy and Raman spectroscopy studies on transition-metal chalcogenides Cu1.89Te single crystals. The metallic Cu1.89Te displays successive metal-semiconductor transitions at low temperatures and almost ideal linear MR when magnetic field up to 33 T. Through the electron diffraction patterns, the stable room-temperature phase is identified as a 3 × 3 × 2 modulated superstructure based on the Nowotny hexagonal structure. The superlattice spots of transmission electron microscopy and scanning tunneling microscopy clearly show the structural transitions from the room-temperature commensurate Ⅰ phase, named as C-Ⅰ phase, to the low temperature commensurate Ⅱ(C-Ⅱ) phase. All the results can be understood in terms of charge density wave(CDW) instability, yielding intuitive evidences for the CDW formations in Cu1.89Te. The additional Raman modes below room temperature further reveal that the zone-folded phonon modes may play an important role on the CDW transitions. Our research sheds light on the novel electron features of Cu1.89Te at low temperature, and may provide potential applications for future nano-devices.展开更多
We present the synthesis of TaCoTe_(2) single crystals and a systematic investigation of the physical properties of bulk crystals and thin flakes.The crystal shows a semiconducting behavior with temperature decreasing...We present the synthesis of TaCoTe_(2) single crystals and a systematic investigation of the physical properties of bulk crystals and thin flakes.The crystal shows a semiconducting behavior with temperature decreasing from room temperature and turns to a metallic behavior below 38 K.When the magnetic field is applied,the temperature-dependent resistivity curves show an upturn below 10 K.Furthermore,we find that the TaCoTe_(2) single crystal can be easily exfoliated from the bulk crystal by the micromechanical exfoliation method.Our measurements suggest that the nanoflakes have properties similar to those of the bulk crystal when the thickness is lowered to 18 nm.展开更多
基金supported by the National Natural Science Foundation of China (61825401 and 91964201)the Innovation Program for Quantum Science and Technology (2021ZD0302403)。
基金supported by the National Key R&D Program of China(2022YFA1403603)the National Natural Science Foundation of China(12174396,12104123,1197402,12204006,and 12241406)+5 种基金the National Natural Science Funds for Distinguished Young Scholar(52325105)Anhui Provincial Natural Science Foundation(2308085Y32 and 2108085QA21)Natural Science Project of Colleges and Universities in Anhui Province(2022AH030011)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB33030100)CAS Project for Young Scientists in Basic Research(YSBR-084)Systematic Fundamental Research Program Leveraging Major Scientific and Technological Infrastructure,Chinese Academy of Sciences(JZHKYPT-2021-08)。
基金supported by the National Natural Science Foundation of China (Grant Nos.U19A2093,11904002,and 12074372)the Excellent Youth Project of Natural Science Foundation of Anhui Province (Grant No.2308085Y07)。
文摘We systematically investigate in-plane transport properties of ternary chalcogenideBi_(2)Rh_(3)Se_(2).Upon rotating the magnetic field within the plane of the sample, one can distinctly detect the presence of both planar Hall resistance and anisotropic longitudinal resistance, and the phenomena appeared are precisely described by the theoretical formulation of the planar Hall effect (PHE). In addition, anisotropic orbital magnetoresistance rather than topologically nontrivial chiral anomalies dominates the PHE in Bi_(2)Rh_(3)Se_(2). The finding not only provides another platform for understanding the mechanism of PHE, but could also be beneficial for future planar Hall sensors based on two-dimensional materials.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2023YFA1607403,2021YFA1600201,and 2022YFA1602603)the Natural Science Foundation of China (Grant Nos.U19A2093,U2032214,and U2032163)+5 种基金the Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP 001)the Youth Innovation Promotion Association of CAS (Grant No.2021117)the Natural Science Foundation of Anhui Province (No.1908085QA15)the HFIPS Director’s Fund (Grant No.YZJJQY202304)the CASHIPS Director’s Fund (Grant No.YZJJ2022QN36)supported by the High Magnetic Field Laboratory of Anhui Province。
文摘We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magnetoresistance without any sign of saturation with a magnetic field up to 30T. We also observe a phase transition with significant anomalies in resistivity and heat capacity at T_(p)~140 K. Thermal expansion measurement reveals a subtle lattice parameter variation near Tp, i.e.,?L_(c)/L_(c)~0.062%. The structural characterization confines that there is no structure transition below and above T_(p). All these results suggest that the nonmagnetic transition of SrCu_(4-x)P_(2) could be associated with structural distortion.
基金supported by the National Natural Science Foundation of China(12104007,12004366,12004367,51627901,12074212,and U19A2093)Tsinghua University-Zhejiang Deqing Joint Research Center for Materials Design and Industrial Innovation,Innovation Program for Quantum Science and Technology(2021ZD0302802)National Key R&D Program of the MOST of China(2022YFA1602603)。
基金supported by the National Natural Science Foundation of China(Grant Nos.U19A2093,11904002,U2032214,U2032163,and 11774353)the National Key Research and Development Program of China(Grant No.2017YFA0403502)+1 种基金the Natural Science Foundation of Anhui Province(Grant No.1908085QA15)the Youth Innovation Promotion Association CAS(Grant No.2017483)。
文摘We report comprehensive transport, electron microscopy and Raman spectroscopy studies on transition-metal chalcogenides Cu1.89Te single crystals. The metallic Cu1.89Te displays successive metal-semiconductor transitions at low temperatures and almost ideal linear MR when magnetic field up to 33 T. Through the electron diffraction patterns, the stable room-temperature phase is identified as a 3 × 3 × 2 modulated superstructure based on the Nowotny hexagonal structure. The superlattice spots of transmission electron microscopy and scanning tunneling microscopy clearly show the structural transitions from the room-temperature commensurate Ⅰ phase, named as C-Ⅰ phase, to the low temperature commensurate Ⅱ(C-Ⅱ) phase. All the results can be understood in terms of charge density wave(CDW) instability, yielding intuitive evidences for the CDW formations in Cu1.89Te. The additional Raman modes below room temperature further reveal that the zone-folded phonon modes may play an important role on the CDW transitions. Our research sheds light on the novel electron features of Cu1.89Te at low temperature, and may provide potential applications for future nano-devices.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFA1600201)the National Natural Science Foundation of China (Grant Nos.U19A2093,U2032214,and U2032163)+4 种基金Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP 001)Youth Innovation Promotion Association of CAS (Grant No.2021117)the HFIPS Director’s Fund (Grant No.YZJJQY202304)the CASHIPS Director’s Fund (Grant No.E26MMG71131)supported by the High Magnetic Field Laboratory of Anhui Province。
文摘We present the synthesis of TaCoTe_(2) single crystals and a systematic investigation of the physical properties of bulk crystals and thin flakes.The crystal shows a semiconducting behavior with temperature decreasing from room temperature and turns to a metallic behavior below 38 K.When the magnetic field is applied,the temperature-dependent resistivity curves show an upturn below 10 K.Furthermore,we find that the TaCoTe_(2) single crystal can be easily exfoliated from the bulk crystal by the micromechanical exfoliation method.Our measurements suggest that the nanoflakes have properties similar to those of the bulk crystal when the thickness is lowered to 18 nm.