The terahertz photonics technique has bright application prospects in future sixth-generation(6G)broadband communication.In this study,we have experimentally demonstrated a photonics-assisted record-breaking net bit r...The terahertz photonics technique has bright application prospects in future sixth-generation(6G)broadband communication.In this study,we have experimentally demonstrated a photonics-assisted record-breaking net bit rate of 417 Gbit/s per wavelength signals delivery in a fiber-wireless converged communication system supported by advanced digital-signalprocessing(DSP)algorithms and a polarization multiplexing-based multiple-input multiple-output(MIMO)scheme.In the experiment,up to 60 GBaud(480 Gbit/s)polarization-division-multiplexing 16-ary quadrature-amplitude-modulation(PDM16QAM)signals are transmitted over 20 km fibers and 3 m wireless 2×2 MIMO links at 318 GHz with the bit error rate(BER)under 1.56×10^(−2).It is the first demonstration to our knowledge of signals delivery exceeding 400 Gbit/s per wavelength in a photonics-assisted fiber-wireless converged 2×2 MIMO communication system.展开更多
Background: Pressure overload-induced myocardial hypertrophy is a key step leading to heart failure. Previous cellular and animal studies demonstrated that deteriorated excitation-contraction coupling occurs as early...Background: Pressure overload-induced myocardial hypertrophy is a key step leading to heart failure. Previous cellular and animal studies demonstrated that deteriorated excitation-contraction coupling occurs as early as the compensated stage of hypertrophy before the global decrease in left ventricular ejection fraction (LVEF). This study was to evaluate the cardiac electromechanical coupling time in evaluating cardiac systolic function in the early stage of heart failure. Methods: Twenty-six patients with Stage B heart failure (SBHF) and 31 healthy controls (CONs) were enrolled in this study. M-mode echocardiography was performed to measure LVEF. Tissue Doppler imaging (TDI) combined with electrocardiography (ECG) was used to measure cardiac electromechanical coupling time. Results: There was no significant difference in LVEF between SBHF patients and CONs (64.23 ± 8.91% vs. 64.52 ± 5.90%; P= 0.886). However, all four electromechanical coupling time courses (Qsb: onset of Q wave on ECG to beginning of S wave on TDI, Qst: onset of Q wave on ECG to top of S wave on TDI, Rsb: top of R wave on ECG to beginning orS wave on TDI, and Rst: top of R wave on ECG to top orS wave on TDI) of SBHF patients were significantly longer than those of CONs (Qsb: 119.19 ± 35.68 ms vs. 80.30 ± 14.81 ms, P 〈 0.001 ; Qst: 165.42 ± 60.93 ms vs. 129.04 ± 16.97 ms, P = 0.006; Rsb: 82.43 ± 33.66 ms vs. 48.30 ± 15.18 ms, P 〈 0.001; and Rst: 122.37 ± 36.66 ins vs. 93.25 ± 16.72 ms, P = 0.001 ), and the Qsb, Rsb, and Rst time showed a significantly higher sensitivity than LVEF (Rst: P =0.032; Rsb: P = 0.003; and Qsb: P = 0.004). Conclusions: The cardiac electromechanical coupling time is more sensitive than LVEF in evaluating cardiac systolic function.展开更多
基金partially supported by the National Natural Science Foundation of China(Nos.61935005,61835002,and62127802)。
文摘The terahertz photonics technique has bright application prospects in future sixth-generation(6G)broadband communication.In this study,we have experimentally demonstrated a photonics-assisted record-breaking net bit rate of 417 Gbit/s per wavelength signals delivery in a fiber-wireless converged communication system supported by advanced digital-signalprocessing(DSP)algorithms and a polarization multiplexing-based multiple-input multiple-output(MIMO)scheme.In the experiment,up to 60 GBaud(480 Gbit/s)polarization-division-multiplexing 16-ary quadrature-amplitude-modulation(PDM16QAM)signals are transmitted over 20 km fibers and 3 m wireless 2×2 MIMO links at 318 GHz with the bit error rate(BER)under 1.56×10^(−2).It is the first demonstration to our knowledge of signals delivery exceeding 400 Gbit/s per wavelength in a photonics-assisted fiber-wireless converged 2×2 MIMO communication system.
基金This study was supported by grants from the National Natural Science Foundation of China (no. 91339105 and no. 81625001) and the Beijing Municipal Science and Technology Commission (no. Z 141100000214006).
文摘Background: Pressure overload-induced myocardial hypertrophy is a key step leading to heart failure. Previous cellular and animal studies demonstrated that deteriorated excitation-contraction coupling occurs as early as the compensated stage of hypertrophy before the global decrease in left ventricular ejection fraction (LVEF). This study was to evaluate the cardiac electromechanical coupling time in evaluating cardiac systolic function in the early stage of heart failure. Methods: Twenty-six patients with Stage B heart failure (SBHF) and 31 healthy controls (CONs) were enrolled in this study. M-mode echocardiography was performed to measure LVEF. Tissue Doppler imaging (TDI) combined with electrocardiography (ECG) was used to measure cardiac electromechanical coupling time. Results: There was no significant difference in LVEF between SBHF patients and CONs (64.23 ± 8.91% vs. 64.52 ± 5.90%; P= 0.886). However, all four electromechanical coupling time courses (Qsb: onset of Q wave on ECG to beginning of S wave on TDI, Qst: onset of Q wave on ECG to top of S wave on TDI, Rsb: top of R wave on ECG to beginning orS wave on TDI, and Rst: top of R wave on ECG to top orS wave on TDI) of SBHF patients were significantly longer than those of CONs (Qsb: 119.19 ± 35.68 ms vs. 80.30 ± 14.81 ms, P 〈 0.001 ; Qst: 165.42 ± 60.93 ms vs. 129.04 ± 16.97 ms, P = 0.006; Rsb: 82.43 ± 33.66 ms vs. 48.30 ± 15.18 ms, P 〈 0.001; and Rst: 122.37 ± 36.66 ins vs. 93.25 ± 16.72 ms, P = 0.001 ), and the Qsb, Rsb, and Rst time showed a significantly higher sensitivity than LVEF (Rst: P =0.032; Rsb: P = 0.003; and Qsb: P = 0.004). Conclusions: The cardiac electromechanical coupling time is more sensitive than LVEF in evaluating cardiac systolic function.