为满足钠离子电池的实际应用,本文采用一种低能耗方法合成了层状NaCrO_(2)正极材料.合成的O3型NaCrO_(2)正极材料即使在高温下也表现出优异的倍率性能.在60℃,100 C倍率下测试时比容量高达47.4 mA h g^(-1),这是由于适当的高温促进了Na^...为满足钠离子电池的实际应用,本文采用一种低能耗方法合成了层状NaCrO_(2)正极材料.合成的O3型NaCrO_(2)正极材料即使在高温下也表现出优异的倍率性能.在60℃,100 C倍率下测试时比容量高达47.4 mA h g^(-1),这是由于适当的高温促进了Na^(+)的扩散.然而,与室温下良好的循环性能相比,高温循环过程中NaCrO_(2)发生了复杂的不可逆结构演变,这导致NaCrO_(2)高温循环性能下降.这项工作将推动具有优异倍率性能、尤其是优异高温倍率性能的钠离子电池层状氧化物正极材料的产业化发展,同时加深对层状氧化物正极材料高温容量衰减机制的理解.展开更多
基金supported by the National Natural Science Foundation of China (21673051)the Natural Science Foundation of Guangdong Province of China (2021A1515010388)。
文摘为满足钠离子电池的实际应用,本文采用一种低能耗方法合成了层状NaCrO_(2)正极材料.合成的O3型NaCrO_(2)正极材料即使在高温下也表现出优异的倍率性能.在60℃,100 C倍率下测试时比容量高达47.4 mA h g^(-1),这是由于适当的高温促进了Na^(+)的扩散.然而,与室温下良好的循环性能相比,高温循环过程中NaCrO_(2)发生了复杂的不可逆结构演变,这导致NaCrO_(2)高温循环性能下降.这项工作将推动具有优异倍率性能、尤其是优异高温倍率性能的钠离子电池层状氧化物正极材料的产业化发展,同时加深对层状氧化物正极材料高温容量衰减机制的理解.