High Speed Railway (HSR) provides its customers not only safety, security, comfort and on-time commuting, but also a fast transportation alternative to air travel or regular passenger rail services. Providing these be...High Speed Railway (HSR) provides its customers not only safety, security, comfort and on-time commuting, but also a fast transportation alternative to air travel or regular passenger rail services. Providing these benefits would not be possible without the tremendous growth and prevalence of wireless communication technologies. Due to advances in wireless communication systems, both trains and passengers are connected through high speed wireless networks to the Internet, data centers and railroad control centers. Railroad communities, academia, related industries and standards bodies, even the European Space Agency, are involved in advancing developments of HSR for highly connected train communication systems. The goal of these efforts is to provide the capabilities for uninterrupted high-speed fault-tolerant communication networks for all possible geographic, structural and weather conditions. This survey provides an overview of the current state-of-the-art and future trends for wireless technologies aiming to realize the concept of HSR communication services. Our goal is to highlight the challenges for these technologies, including GSM-R, Wi-Fi, WIMAX, LTE-R, RoF, LCX & Cognitive Radio, the offered solutions, their performance, and other related issues. Currently, providing HSR services is the goal of many countries across the globe. Europe, Japan & Taiwan, China, as well as North & South America have increased their efforts to advance HSR technologies to monitor and control not only the operations but also to deliver extensive broadband solutions to passengers. This survey determined a trend of the industry to transition control plane operations towards narrowband frequencies, i.e. LTE400/700, and to utilize concurrently other technologies for broadband access for passengers such that services of both user and train control systems are supported. With traditional technologies, a tradeoff was required and often favored train control services over passenger amenities. However, with the advances in communication展开更多
文摘High Speed Railway (HSR) provides its customers not only safety, security, comfort and on-time commuting, but also a fast transportation alternative to air travel or regular passenger rail services. Providing these benefits would not be possible without the tremendous growth and prevalence of wireless communication technologies. Due to advances in wireless communication systems, both trains and passengers are connected through high speed wireless networks to the Internet, data centers and railroad control centers. Railroad communities, academia, related industries and standards bodies, even the European Space Agency, are involved in advancing developments of HSR for highly connected train communication systems. The goal of these efforts is to provide the capabilities for uninterrupted high-speed fault-tolerant communication networks for all possible geographic, structural and weather conditions. This survey provides an overview of the current state-of-the-art and future trends for wireless technologies aiming to realize the concept of HSR communication services. Our goal is to highlight the challenges for these technologies, including GSM-R, Wi-Fi, WIMAX, LTE-R, RoF, LCX & Cognitive Radio, the offered solutions, their performance, and other related issues. Currently, providing HSR services is the goal of many countries across the globe. Europe, Japan & Taiwan, China, as well as North & South America have increased their efforts to advance HSR technologies to monitor and control not only the operations but also to deliver extensive broadband solutions to passengers. This survey determined a trend of the industry to transition control plane operations towards narrowband frequencies, i.e. LTE400/700, and to utilize concurrently other technologies for broadband access for passengers such that services of both user and train control systems are supported. With traditional technologies, a tradeoff was required and often favored train control services over passenger amenities. However, with the advances in communication