Monitoring Forest degradation is evidence enough to show a country’s commitment to monitor the forest trend both for national and local decision-making and international reporting processes. Unlike deforestation whic...Monitoring Forest degradation is evidence enough to show a country’s commitment to monitor the forest trend both for national and local decision-making and international reporting processes. Unlike deforestation which is easier to point out, monitoring forest degradation is quite a challenge since there is no universal definition and thus no clear monitoring methods apart from the canopy cover change. This research, therefore, sought to look at the degradation trends in the Mau forest complex between 1995-2020 with the aim of finding out whether monitoring canopy density changes over time and quantifying these changes in terms of biomass loss could be a good approach in monitoring forest degradation. Forest Canopy Density (FCD) model was adopted focusing on using vegetation indices describing biophysical conditions of Vegetation, Shadow and Bareness to monitor changes in canopy density as a parameter for describing forest degradation in the forest blocks of Maasai Mau and Olpusimoru in Mau forest complex. Results indicated how different vegetation indices responded to changes in the vegetation density and eventually changes in the canopy density values which were converted in terms of biomass loss. The forest Canopy Density model proved to be a good tool for monitoring forest degradation since it combines different biophysical indices with different characteristics capturing what is happening below the canopy.展开更多
文摘Monitoring Forest degradation is evidence enough to show a country’s commitment to monitor the forest trend both for national and local decision-making and international reporting processes. Unlike deforestation which is easier to point out, monitoring forest degradation is quite a challenge since there is no universal definition and thus no clear monitoring methods apart from the canopy cover change. This research, therefore, sought to look at the degradation trends in the Mau forest complex between 1995-2020 with the aim of finding out whether monitoring canopy density changes over time and quantifying these changes in terms of biomass loss could be a good approach in monitoring forest degradation. Forest Canopy Density (FCD) model was adopted focusing on using vegetation indices describing biophysical conditions of Vegetation, Shadow and Bareness to monitor changes in canopy density as a parameter for describing forest degradation in the forest blocks of Maasai Mau and Olpusimoru in Mau forest complex. Results indicated how different vegetation indices responded to changes in the vegetation density and eventually changes in the canopy density values which were converted in terms of biomass loss. The forest Canopy Density model proved to be a good tool for monitoring forest degradation since it combines different biophysical indices with different characteristics capturing what is happening below the canopy.