Thin,soft,and skin-integrated electronic system has great advantages for realizing continuous human healthcare monitoring.Here,we report an ultra-thin,flexible,and garment-based microelectronics powered by sweat-activ...Thin,soft,and skin-integrated electronic system has great advantages for realizing continuous human healthcare monitoring.Here,we report an ultra-thin,flexible,and garment-based microelectronics powered by sweat-activated batteries(SABs)and applications of powering biosensors and microelectronic systems for real time sweat monitoring.The SAB cell is ultra-thin(1.25 mm)with excellent biocompatibility.The SAB has good electricity output with high capacity(14.33 mAh)and maximum power density(3.17 mW cm^(−2))after being activated by the sweat volume of 0.045 mL cm^(−2),which could continuously power 120 light emitting diodes over 3 h.The outputs could maintain stable after repeatable bending.Wireless microelectronics system could be continuously powered by the SABs for 3 h to monitor sweat and physiological information,including sweat Na+concentration,pH,and skin impedance.The reported integrated system provides a potential for solving the power issues of flexible wearable electronics and realizing personalized medicine.展开更多
Wearable sweat sensors are gaining significant attention due to their unparalleled potential for noninvasive health monitoring.Sweat,as a kind of body fluid,contains informative physiological indicators that are relat...Wearable sweat sensors are gaining significant attention due to their unparalleled potential for noninvasive health monitoring.Sweat,as a kind of body fluid,contains informative physiological indicators that are related to personalized health status.Advances in wearable sweat sampling and routing technologies,flexible,and stretchable materials,and wireless digital technologies have led to the development of integrated sweat sensors that are comfortable,flexible,light,and intelligent.Herein,we report a flexible and integrated wearable device via incorporating a microfluidic system and a sensing chip with skin-integrated electronic format toward in-situ monitoring of uric acid(UA)in sweat that associates with gout,cardiovascular,and renal diseases.The microfluidic system validly realizes the real-time capture perspiration from human skin.The obtained detection range is 5-200μM and the detection limit is 1.79μM,which offers an importance diagnostic method for clinical relevant lab test.The soft and flexible features of the constructed device allows it to be mounted onto nearly anywhere on the body.We tested the sweat UA in diverse subjects and various body locations during exercise,and similar trends were also observed by using a commercial UA assay kit.展开更多
The scheduled electric vehicle(EV)charging flexibility has great potential in supporting the operation of power systems,yet achieving such benefits is challenged by the uncertain and user-dependent nature of EV chargi...The scheduled electric vehicle(EV)charging flexibility has great potential in supporting the operation of power systems,yet achieving such benefits is challenged by the uncertain and user-dependent nature of EV charging behavior.Existing research primarily focuses on modeling the uncertain EV arrival and battery status yet rarely discusses the uncertainty in EV departure.In this paper,we investigate the EV charging scheduling strategy to support load flattening at the distribution level of the utility grid under uncertain EV departures.A holistic methodology is proposed to formulate the unexpected trip uncertainty and mitigate its negative impacts.To ensure computational efficiency when large EV fleets are involved,a distributed solution framework is developed based on the alternating direction method of multipliers(ADMM)algorithm.The numerical results reveal that unexpected trips can severely damage user convenience in terms of EV energy content.It is further confirmed that by applying the proposed methodology,the resultant critical and sub-critical user convenience losses due to scheduled charging are reduced significantly by 83.5%and 70.5%,respectively,whereas the load flattening performance is merely sacrificed by 17%.展开更多
Expanding wearable technologies to artificial tactile perception will be of significance for intelligent human-machine interface,as neuromorphic sensing devices are promising candidates due to their low energy consump...Expanding wearable technologies to artificial tactile perception will be of significance for intelligent human-machine interface,as neuromorphic sensing devices are promising candidates due to their low energy consumption and highly effective operating properties.Skin-compatible and conformable features are required for the purpose of realizing wearable artificial tactile perception.Here,we report an intrinsically stretchable,skin-integrated neuromorphic system with triboelectric nanogenerators as tactile sensing and organic electrochemical transistors as information processing.The integrated system provides desired sensing,synaptic,and mechanical characteristics,such as sensitive response(~0.04 kPa^(-1))to low-pressure,short-and long-term synaptic plasticity,great switching endurance(>10000 pulses),symmetric weight update,together with high stretchability of 100%strain.With neural encoding,demonstrations are capable of recognizing,extracting,and encoding features of tactile information.This work provides a feasible approach to wearable,skin-conformable neuromorphic sensing system with great application prospects in intelligent robotics and replacement prosthetics.展开更多
With the requirements of self-powering sensors in flexible electronics,wearable triboelectric nanogenerators(TENGs)have attracted great attention due to their advantages of excellent electrical outputs and low-cost pr...With the requirements of self-powering sensors in flexible electronics,wearable triboelectric nanogenerators(TENGs)have attracted great attention due to their advantages of excellent electrical outputs and low-cost processing routes.The crosstalk effect between adjacent sensing units in TENGs significantly limits the pixel density of sensor arrays.Here,we present a skin-integrated,flexible TENG sensor array with 100 sensing units in an overall size of 7.5 cm×7.5 cm that can be processed in a simple,low-cost,and scalable way enabled by 3D printing.All the sensing units show good sensitivity of 0.11 V/kPa with a wide range of pressure detection from 10 to 65 kPa,which allows to accurately distinguish various tactile formats from gentle touching(as low as 2 kPa)to hard pressuring.The 3D printing patterned substrate allows to cast triboelectric layers of polydimethylsiloxane in an independent sensing manner for each unit,which greatly suppresses the cross talk arising from adjacent sensing units,where the maximum crosstalk output is only 10.8%.The excellent uniformity and reproducibility of the sensor array offer precise pressure mapping for complicated pattern loadings,which demonstrates its potential in tactile sensing and human-machine interfaces.展开更多
基金supported by City University of Hong Kong (Grants No.9667199,9667221,9680322)Research Grants Council of the Hong Kong Special Administrative Region (Grant No.21210820,11213721)Shenzhen Science and Technology Innovation Commission (Grant No.JCYJ20200109110201713).
文摘Thin,soft,and skin-integrated electronic system has great advantages for realizing continuous human healthcare monitoring.Here,we report an ultra-thin,flexible,and garment-based microelectronics powered by sweat-activated batteries(SABs)and applications of powering biosensors and microelectronic systems for real time sweat monitoring.The SAB cell is ultra-thin(1.25 mm)with excellent biocompatibility.The SAB has good electricity output with high capacity(14.33 mAh)and maximum power density(3.17 mW cm^(−2))after being activated by the sweat volume of 0.045 mL cm^(−2),which could continuously power 120 light emitting diodes over 3 h.The outputs could maintain stable after repeatable bending.Wireless microelectronics system could be continuously powered by the SABs for 3 h to monitor sweat and physiological information,including sweat Na+concentration,pH,and skin impedance.The reported integrated system provides a potential for solving the power issues of flexible wearable electronics and realizing personalized medicine.
基金This work was also sponsored by InnoHK Project on Project 2.2-artificial intelligent(Al)-based 3D ultrasound imaging algorithm at Hong Kong Centre for Cerebro-Cardiovascular Health Engineering(CoCHE),Center of Flexible Electronics Technology,and Qiantang Science and Technology Innovation Center.
文摘Wearable sweat sensors are gaining significant attention due to their unparalleled potential for noninvasive health monitoring.Sweat,as a kind of body fluid,contains informative physiological indicators that are related to personalized health status.Advances in wearable sweat sampling and routing technologies,flexible,and stretchable materials,and wireless digital technologies have led to the development of integrated sweat sensors that are comfortable,flexible,light,and intelligent.Herein,we report a flexible and integrated wearable device via incorporating a microfluidic system and a sensing chip with skin-integrated electronic format toward in-situ monitoring of uric acid(UA)in sweat that associates with gout,cardiovascular,and renal diseases.The microfluidic system validly realizes the real-time capture perspiration from human skin.The obtained detection range is 5-200μM and the detection limit is 1.79μM,which offers an importance diagnostic method for clinical relevant lab test.The soft and flexible features of the constructed device allows it to be mounted onto nearly anywhere on the body.We tested the sweat UA in diverse subjects and various body locations during exercise,and similar trends were also observed by using a commercial UA assay kit.
基金supported by the National Natural Science Foundation of China(No.72071100)Shenzhen Basic Research Program(No.JCYJ20210324104410030)Young Elite Scientist Sponsorship Program by CSEE(No.CSEE-YESS-2020027)。
文摘The scheduled electric vehicle(EV)charging flexibility has great potential in supporting the operation of power systems,yet achieving such benefits is challenged by the uncertain and user-dependent nature of EV charging behavior.Existing research primarily focuses on modeling the uncertain EV arrival and battery status yet rarely discusses the uncertainty in EV departure.In this paper,we investigate the EV charging scheduling strategy to support load flattening at the distribution level of the utility grid under uncertain EV departures.A holistic methodology is proposed to formulate the unexpected trip uncertainty and mitigate its negative impacts.To ensure computational efficiency when large EV fleets are involved,a distributed solution framework is developed based on the alternating direction method of multipliers(ADMM)algorithm.The numerical results reveal that unexpected trips can severely damage user convenience in terms of EV energy content.It is further confirmed that by applying the proposed methodology,the resultant critical and sub-critical user convenience losses due to scheduled charging are reduced significantly by 83.5%and 70.5%,respectively,whereas the load flattening performance is merely sacrificed by 17%.
基金The Foundation of National Natural Science Foundation of China,Grant/Award Number:61421002City University of Hong Kong,Grant/Award Numbers:9678274,9667221,9680322+5 种基金Research Grants Council of Hong Kong Special Administrative Region,Grant/Award Numbers:21210820,11213721,11215722Regional Joint Fund of the National Science Foundation of China,Grant/Award Number:U21A20492The Sichuan Science and Technology Program,Grant/Award Numbers:2022YFH0081,2022YFG0012,2022YFG0013The Sichuan Province Key Laboratory of Display Science and TechnologyInnoHK Project on Project 2.2—AI-based 3D ultrasound imaging algorithm at Hong Kong Centre for Cerebro-Cardiovascular Health Engineering(COCHE)RGC Senior Research Fellow Scheme,Grant/Award Number:SRFS2122-5S04.
文摘Expanding wearable technologies to artificial tactile perception will be of significance for intelligent human-machine interface,as neuromorphic sensing devices are promising candidates due to their low energy consumption and highly effective operating properties.Skin-compatible and conformable features are required for the purpose of realizing wearable artificial tactile perception.Here,we report an intrinsically stretchable,skin-integrated neuromorphic system with triboelectric nanogenerators as tactile sensing and organic electrochemical transistors as information processing.The integrated system provides desired sensing,synaptic,and mechanical characteristics,such as sensitive response(~0.04 kPa^(-1))to low-pressure,short-and long-term synaptic plasticity,great switching endurance(>10000 pulses),symmetric weight update,together with high stretchability of 100%strain.With neural encoding,demonstrations are capable of recognizing,extracting,and encoding features of tactile information.This work provides a feasible approach to wearable,skin-conformable neuromorphic sensing system with great application prospects in intelligent robotics and replacement prosthetics.
基金This work was supported in part by InnoHK Project on Project 2.2-AI-based 3D ultrasound imaging algorithm at Hong Kong Centre for Cerebro-cardiovascular Health Engineering(COCHE),in part by Research Grants Council of the Hong Kong Special Administrative Region(21210820,and 11213721)in part by Shenzhen Science and Technology Innovation Commission(JCYJ20200109110201713)in part by National Natural Science Foundation of China(62122002,and U21A20492).
文摘With the requirements of self-powering sensors in flexible electronics,wearable triboelectric nanogenerators(TENGs)have attracted great attention due to their advantages of excellent electrical outputs and low-cost processing routes.The crosstalk effect between adjacent sensing units in TENGs significantly limits the pixel density of sensor arrays.Here,we present a skin-integrated,flexible TENG sensor array with 100 sensing units in an overall size of 7.5 cm×7.5 cm that can be processed in a simple,low-cost,and scalable way enabled by 3D printing.All the sensing units show good sensitivity of 0.11 V/kPa with a wide range of pressure detection from 10 to 65 kPa,which allows to accurately distinguish various tactile formats from gentle touching(as low as 2 kPa)to hard pressuring.The 3D printing patterned substrate allows to cast triboelectric layers of polydimethylsiloxane in an independent sensing manner for each unit,which greatly suppresses the cross talk arising from adjacent sensing units,where the maximum crosstalk output is only 10.8%.The excellent uniformity and reproducibility of the sensor array offer precise pressure mapping for complicated pattern loadings,which demonstrates its potential in tactile sensing and human-machine interfaces.