With the rapid development and change in society,children and adolescents are facing more and more psychological pressure,which comes not only from academic performance and interpersonal relationships but also from fa...With the rapid development and change in society,children and adolescents are facing more and more psychological pressure,which comes not only from academic performance and interpersonal relationships but also from family environment,social expectations and other aspects.Psychological stress not only affects the mental health of children and adolescents but is also closely related to their eating behavior.Therefore,exploring the relationship between psychological stress and eating behaviors is of great significance in promoting the physical and mental health development of children and adolescents.Based on this,the study reviewed the research progress on the relationship between psychological stress and eating behavior of children and adolescents in recent years.The relationships between psychological stress and general eating behaviors,abnormal eating behaviors and eating disorders were successively reviewed,and the related physiological mechanisms were explored with a view to providing a scientific basis for mental health education and eating behavior intervention for children and adolescents.展开更多
【目的】细菌机械敏感性离子通道MscS能够在细菌周围环境渗透压急剧降低时,打开并释放胞内内容物,平衡内外渗透压差,使细菌存活。鉴于其广泛分布在各种细菌中,而在哺乳动物中未发现其同源体,MscS被认为是一种新型抗生素靶点。MscS一个...【目的】细菌机械敏感性离子通道MscS能够在细菌周围环境渗透压急剧降低时,打开并释放胞内内容物,平衡内外渗透压差,使细菌存活。鉴于其广泛分布在各种细菌中,而在哺乳动物中未发现其同源体,MscS被认为是一种新型抗生素靶点。MscS一个独特的开放特征是具有失活特性,即在持续的机械刺激条件下,MscS从开放状态进入一种非离子通透的失活状态,从而避免因通道持续开放引起大量内容物流失导致细菌死亡。该研究的目的是鉴定影响MscS失活的关键氨基酸,为靶向Msc S的药物设计提供思路。【方法】采用分子克隆方法制备Msc S Cyto-helix(P166−I170)半胱氨酸突变体,利用巯基化合物MTSET^(+)结合半胱氨酸从而对其侧链基团进行修饰,并通过低渗刺激实验,检测表达MscS半胱氨酸突变体的大肠杆菌分别在无或有MTSET^(+)处理下,低渗刺激诱发通道开放后的存活率筛选显著影响通道功能的突变体。利用电生理膜片钳方法检测突变体在MTSET^(+)处理前后通道失活特性的变化,结合定点突变手段进一步探讨失活机制。【结果】MTSET^(+)处理导致表达半胱氨酸突变体G168C-MscS的大肠杆菌在低渗刺激后存活率极大降低;G168C-MscS在结合MTSET^(+)后失去失活特性,保持持续开放,是导致细菌胞内内容物大量流失并死亡的重要原因;酪氨酸突变G168Y-MscS、亮氨酸突变G168L-MscS和赖氨酸突变G168K-MscS的失活特性与野生型WT-MscS一致,而天冬氨酸突变G168D、缬氨酸突变G168V和异亮氨酸突变G168I的失活速率显著降低,尤其是G168I-MscS失去失活特性,表明MscS 168位点是影响通道失活的关键位点,并且通道失活特性与该位点氨基酸侧链基团的大小及电荷性质相关。【结论】G168位点甘氨酸是影响MscS通道失活的关键氨基酸。展开更多
Retinoic acid(RA)and 2-phospho-L-ascorbic acid trisodium salt(AscPNa)promote the reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells.In the current studies,the lower abilities of RA and AscP...Retinoic acid(RA)and 2-phospho-L-ascorbic acid trisodium salt(AscPNa)promote the reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells.In the current studies,the lower abilities of RA and AscPNa to promote reprogramming in the presence of each other suggested that they may share downstream pathways at least partially.The hypothesis was further supported by the RNA-seq analysis which demonstrated a high-level overlap between RA-activated and AscPNa activated genes during reprogramming.In addition,RA upregulated Glut1/3,facilitated the membrane transportation of dehydroascorbic acid,the oxidized form of L-ascorbic acid,and subsequently maintained intracellular L-ascorbic acid at higher level and for longer time.On the other hand,AscPNa facilitated the mesenchymal-epithelial transition during reprogramming,downregulated key mesenchymal transcriptional factors like Zeb1 and Twist1,subsequently suppressed the expression of Cyp26a1/b1 which mediates the metabolism of RA,and sustained the intracellular level of RA.Furthermore,the different abilities of RA and AscPNa to induce mesenchymal-epithelial transition,pluripotency,and neuronal differentiation explain their complex contribution to reprogramming when used individually or in combination.Therefore,the current studies identified a positive feedback between RA and AscPNa,or possibility between vitamin A and C,and further explored their contributions to reprogramming.展开更多
In this review,the advanced microwave devices based on the integrated passive device(IPD)technology are expounded and discussed in detail,involving the performance breakthroughs and circuit innovations.Then,the develo...In this review,the advanced microwave devices based on the integrated passive device(IPD)technology are expounded and discussed in detail,involving the performance breakthroughs and circuit innovations.Then,the development trend of IPD-based multifunctional microwave circuits is predicted further by analyzing the current research hot spots.This paper discusses a distinctive research area for microwave circuits and mobile-terminal radio-frequency integrated chips.展开更多
基金Shaanxi Provincial People’s Hospital Science and Technology Development Incubation Fund(2023HL-11)Shaanxi Provincial People’s Hospital Science and Technology Development Incubation Fund(2023HL-34)Shaanxi Provincial People’s Hospital Internal Incubation Fund(2022HL-08)。
文摘With the rapid development and change in society,children and adolescents are facing more and more psychological pressure,which comes not only from academic performance and interpersonal relationships but also from family environment,social expectations and other aspects.Psychological stress not only affects the mental health of children and adolescents but is also closely related to their eating behavior.Therefore,exploring the relationship between psychological stress and eating behaviors is of great significance in promoting the physical and mental health development of children and adolescents.Based on this,the study reviewed the research progress on the relationship between psychological stress and eating behavior of children and adolescents in recent years.The relationships between psychological stress and general eating behaviors,abnormal eating behaviors and eating disorders were successively reviewed,and the related physiological mechanisms were explored with a view to providing a scientific basis for mental health education and eating behavior intervention for children and adolescents.
文摘【目的】细菌机械敏感性离子通道MscS能够在细菌周围环境渗透压急剧降低时,打开并释放胞内内容物,平衡内外渗透压差,使细菌存活。鉴于其广泛分布在各种细菌中,而在哺乳动物中未发现其同源体,MscS被认为是一种新型抗生素靶点。MscS一个独特的开放特征是具有失活特性,即在持续的机械刺激条件下,MscS从开放状态进入一种非离子通透的失活状态,从而避免因通道持续开放引起大量内容物流失导致细菌死亡。该研究的目的是鉴定影响MscS失活的关键氨基酸,为靶向Msc S的药物设计提供思路。【方法】采用分子克隆方法制备Msc S Cyto-helix(P166−I170)半胱氨酸突变体,利用巯基化合物MTSET^(+)结合半胱氨酸从而对其侧链基团进行修饰,并通过低渗刺激实验,检测表达MscS半胱氨酸突变体的大肠杆菌分别在无或有MTSET^(+)处理下,低渗刺激诱发通道开放后的存活率筛选显著影响通道功能的突变体。利用电生理膜片钳方法检测突变体在MTSET^(+)处理前后通道失活特性的变化,结合定点突变手段进一步探讨失活机制。【结果】MTSET^(+)处理导致表达半胱氨酸突变体G168C-MscS的大肠杆菌在低渗刺激后存活率极大降低;G168C-MscS在结合MTSET^(+)后失去失活特性,保持持续开放,是导致细菌胞内内容物大量流失并死亡的重要原因;酪氨酸突变G168Y-MscS、亮氨酸突变G168L-MscS和赖氨酸突变G168K-MscS的失活特性与野生型WT-MscS一致,而天冬氨酸突变G168D、缬氨酸突变G168V和异亮氨酸突变G168I的失活速率显著降低,尤其是G168I-MscS失去失活特性,表明MscS 168位点是影响通道失活的关键位点,并且通道失活特性与该位点氨基酸侧链基团的大小及电荷性质相关。【结论】G168位点甘氨酸是影响MscS通道失活的关键氨基酸。
基金This work was supported by the National Natural Science Foundation of China(Grant No.31671475,U1601228,31900699,and 81702445)the Strategic Priority Research Program of Chinese Academy of Sciences,No.XDA16010305+3 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences,No.QYZDB-SSW-SMC031the International Partnership Program of Chinese Academy of Sciences,No.154144KYSB20190034the Key Research&Development Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory(Grant No.2018GZR110104008)the Science and Technology Planning Project of Guangdong Province(Grant No.2017B030314056)。
文摘Retinoic acid(RA)and 2-phospho-L-ascorbic acid trisodium salt(AscPNa)promote the reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells.In the current studies,the lower abilities of RA and AscPNa to promote reprogramming in the presence of each other suggested that they may share downstream pathways at least partially.The hypothesis was further supported by the RNA-seq analysis which demonstrated a high-level overlap between RA-activated and AscPNa activated genes during reprogramming.In addition,RA upregulated Glut1/3,facilitated the membrane transportation of dehydroascorbic acid,the oxidized form of L-ascorbic acid,and subsequently maintained intracellular L-ascorbic acid at higher level and for longer time.On the other hand,AscPNa facilitated the mesenchymal-epithelial transition during reprogramming,downregulated key mesenchymal transcriptional factors like Zeb1 and Twist1,subsequently suppressed the expression of Cyp26a1/b1 which mediates the metabolism of RA,and sustained the intracellular level of RA.Furthermore,the different abilities of RA and AscPNa to induce mesenchymal-epithelial transition,pluripotency,and neuronal differentiation explain their complex contribution to reprogramming when used individually or in combination.Therefore,the current studies identified a positive feedback between RA and AscPNa,or possibility between vitamin A and C,and further explored their contributions to reprogramming.
基金Beijing Natural Science Foundation(No.JQ19018)National Natural Science Foundations of China(No.U20A20203 and No.61971052)National Special Support Program for High-Level Personnel Recruitment(No.2018RA2131)。
文摘In this review,the advanced microwave devices based on the integrated passive device(IPD)technology are expounded and discussed in detail,involving the performance breakthroughs and circuit innovations.Then,the development trend of IPD-based multifunctional microwave circuits is predicted further by analyzing the current research hot spots.This paper discusses a distinctive research area for microwave circuits and mobile-terminal radio-frequency integrated chips.