Fabric outer appearance is influenced by various fabric structures. In this research work, the physical properties of plain and twill were analyzed. Physical, mechanical and other aesthetic properties are also tested ...Fabric outer appearance is influenced by various fabric structures. In this research work, the physical properties of plain and twill were analyzed. Physical, mechanical and other aesthetic properties are also tested and the finding results are also compared between two samples. After testing the samples it is found that rubbing fastness remains unchanged for plain and twill fabric. Abrasion resistance, pilling, crease recovery and cover factor were evaluated for twill and plain structures using ISO 12945-2, ISO 12945-1 and ISO 2313 methods respectively. Abrasion resistance and pills property are not good for twill fabric in comparison with plain fabric but crease recovery is better of twill fabric.展开更多
Salt stress is one of the major limitations to modern agriculture that negatively influences plant growth and productivity.Salt tolerant cultivar can provide excellent solution to enhance stress tolerance with plantfitn...Salt stress is one of the major limitations to modern agriculture that negatively influences plant growth and productivity.Salt tolerant cultivar can provide excellent solution to enhance stress tolerance with plantfitness to unfavorable environments.Therefore,this study was aimed to screen salt tolerant sorghum genotypes through evaluating of different morphological,biochemical,and physiological attributes in response to salinity stress.In this study,we have been evaluated total six sorghum genotypes including Hybrid sorgo,Debgiri,BD-703,BD-706,BD-707,and BD-725 under salt stress(12 dS m^(-1) NaCl).The response variables included length and weight of root and shoot,root:shoot ratio(RSR),photosynthesis(A),transpiration rate(E),elemental concen-trations(K^(+),Na^(+) and K^(+)/Na^(+)),photochemical efficiency of photosystem II(F_(v)/F_(m)),water use efficiency(WUE)and pigment content(chlorophyll a,and b).The results revealed that saline environment significantly reduced all response variables under study of sorghum genotypes,however,Hybrid sorgo remained unmatched by recording the maximum root and shoot traits.The same genotype recorded higher photosynthetic efficiency which was attributed to Na^(+) extrusion,K^(+) uptake and higher K^(+)/Na^(+) ratio(1.8 at stress),while these mechanisms were not fully active in rest of genotypes.Moreover,this study also implies the involvement of proline in imparting tolerance against saline environment in Hybrid sorgo genotype.Overall,BD-703 remained the most salt sensitive genotype as evident from the minimum morphological growth traits and the least biosynthesis of osmoprotectants.Thesefindings open new research avenues for salt stress alleviation by identifying elite salt-to-lerant genotypes of sorghum for breeding programs.展开更多
文摘Fabric outer appearance is influenced by various fabric structures. In this research work, the physical properties of plain and twill were analyzed. Physical, mechanical and other aesthetic properties are also tested and the finding results are also compared between two samples. After testing the samples it is found that rubbing fastness remains unchanged for plain and twill fabric. Abrasion resistance, pilling, crease recovery and cover factor were evaluated for twill and plain structures using ISO 12945-2, ISO 12945-1 and ISO 2313 methods respectively. Abrasion resistance and pills property are not good for twill fabric in comparison with plain fabric but crease recovery is better of twill fabric.
基金This research was funded by the Researchers Supporting Project No. (RSP2023R390),King Saud University, Riyadh, Saudi Arabia.
文摘Salt stress is one of the major limitations to modern agriculture that negatively influences plant growth and productivity.Salt tolerant cultivar can provide excellent solution to enhance stress tolerance with plantfitness to unfavorable environments.Therefore,this study was aimed to screen salt tolerant sorghum genotypes through evaluating of different morphological,biochemical,and physiological attributes in response to salinity stress.In this study,we have been evaluated total six sorghum genotypes including Hybrid sorgo,Debgiri,BD-703,BD-706,BD-707,and BD-725 under salt stress(12 dS m^(-1) NaCl).The response variables included length and weight of root and shoot,root:shoot ratio(RSR),photosynthesis(A),transpiration rate(E),elemental concen-trations(K^(+),Na^(+) and K^(+)/Na^(+)),photochemical efficiency of photosystem II(F_(v)/F_(m)),water use efficiency(WUE)and pigment content(chlorophyll a,and b).The results revealed that saline environment significantly reduced all response variables under study of sorghum genotypes,however,Hybrid sorgo remained unmatched by recording the maximum root and shoot traits.The same genotype recorded higher photosynthetic efficiency which was attributed to Na^(+) extrusion,K^(+) uptake and higher K^(+)/Na^(+) ratio(1.8 at stress),while these mechanisms were not fully active in rest of genotypes.Moreover,this study also implies the involvement of proline in imparting tolerance against saline environment in Hybrid sorgo genotype.Overall,BD-703 remained the most salt sensitive genotype as evident from the minimum morphological growth traits and the least biosynthesis of osmoprotectants.Thesefindings open new research avenues for salt stress alleviation by identifying elite salt-to-lerant genotypes of sorghum for breeding programs.