Sunshine duration (S) based empirical equations have been employed in this study to estimate the daily global solar radiation on a horizontal surface (G) for six meteorological stations in Burundi. Those equations inc...Sunshine duration (S) based empirical equations have been employed in this study to estimate the daily global solar radiation on a horizontal surface (G) for six meteorological stations in Burundi. Those equations include the Ångström-Prescott linear model and four amongst its derivatives, i.e. logarithmic, exponential, power and quadratic functions. Monthly mean values of daily global solar radiation and sunshine duration data for a period of 20 to 23 years, from the Geographical Institute of Burundi (IGEBU), have been used. For any of the six stations, ten single or double linear regressions have been developed from the above-said five functions, to relate in terms of monthly mean values, the daily clearness index () to each of the next two kinds of relative sunshine duration (RSD): and . In those ratios, G<sub>0</sub>, S<sub>0 </sub>and stand for the extraterrestrial daily solar radiation on a horizontal surface, the day length and the modified day length taking into account the natural site’s horizon, respectively. According to the calculated mean values of the clearness index and the RSD, each station experiences a high number of fairly clear (or partially cloudy) days. Estimated values of the dependent variable (y) in each developed linear regression, have been compared to measured values in terms of the coefficients of correlation (R) and of determination (R<sub>2</sub>), the mean bias error (MBE), the root mean square error (RMSE) and the t-statistics. Mean values of these statistical indicators have been used to rank, according to decreasing performance level, firstly the ten developed equations per station on account of the overall six stations, secondly the six stations on account of the overall ten equations. Nevertheless, the obtained values of those indicators lay in the next ranges for all the developed sixty equations:;;;, with . These results lead to assert that any of the sixty developed linear regressions (and thus equations in terms of and ), fits very adequately measured data, and should 展开更多
1-year hourly wind speed data from two Burundian stations, namely Bujumbura and Muyinga, have been processed in this work to bring an efficient help for the planning and installation of wind energy conversion systems ...1-year hourly wind speed data from two Burundian stations, namely Bujumbura and Muyinga, have been processed in this work to bring an efficient help for the planning and installation of wind energy conversion systems (WECS) at those localities. Mean seasonal and diurnal variations of wind direction and wind shear exponent have been derived. Two-parameter Weibull probability density functions (PDFs) fitting the observed monthly and annual wind speed relative frequency distributions have been implemented. As shown through three complementary statistical tests, the fitting technique was very satisfactory. A wind resource analysis at 10 m above ground level (AGL) has led to a mean power density at Bujumbura which is almost thirteen fold higher than at Muyinga. The use of the empirical power law to extrapolate wind characteristics at heights from 150 to 350 m AGL has shown that energy potential of hilltops around Muyinga was only suitable for small, individual scale wind energy applications. At the opposite, wind energy potential of ridge-tops and hilltops around Bujumbura has been found suitable for medium and large scale electricity production. For that locality and at those heights, energy outputs and capacity factors (CF or C<sub>f</sub>) have been computed for ten selected wind turbines (WTs), together with costs of electricity (COE) using the present value of cost (PVC) method. Amongst those WTs, YDF-1500-87 and S95-2.1 MW have emerged as the best options for installation owing to their highest CF and lowest COE. Moreover, an analysis of those two quantities at monthly basis for YDF-1500-87 WT has led to its best performance in the dry season. Compared to the average present COE of household hydroelectricity consumption, results of this study have evidenced economical feasibility and benefit of WECS setting in selected Burundian sites in order to supplement traditional electricity sources.展开更多
文摘Sunshine duration (S) based empirical equations have been employed in this study to estimate the daily global solar radiation on a horizontal surface (G) for six meteorological stations in Burundi. Those equations include the Ångström-Prescott linear model and four amongst its derivatives, i.e. logarithmic, exponential, power and quadratic functions. Monthly mean values of daily global solar radiation and sunshine duration data for a period of 20 to 23 years, from the Geographical Institute of Burundi (IGEBU), have been used. For any of the six stations, ten single or double linear regressions have been developed from the above-said five functions, to relate in terms of monthly mean values, the daily clearness index () to each of the next two kinds of relative sunshine duration (RSD): and . In those ratios, G<sub>0</sub>, S<sub>0 </sub>and stand for the extraterrestrial daily solar radiation on a horizontal surface, the day length and the modified day length taking into account the natural site’s horizon, respectively. According to the calculated mean values of the clearness index and the RSD, each station experiences a high number of fairly clear (or partially cloudy) days. Estimated values of the dependent variable (y) in each developed linear regression, have been compared to measured values in terms of the coefficients of correlation (R) and of determination (R<sub>2</sub>), the mean bias error (MBE), the root mean square error (RMSE) and the t-statistics. Mean values of these statistical indicators have been used to rank, according to decreasing performance level, firstly the ten developed equations per station on account of the overall six stations, secondly the six stations on account of the overall ten equations. Nevertheless, the obtained values of those indicators lay in the next ranges for all the developed sixty equations:;;;, with . These results lead to assert that any of the sixty developed linear regressions (and thus equations in terms of and ), fits very adequately measured data, and should
文摘1-year hourly wind speed data from two Burundian stations, namely Bujumbura and Muyinga, have been processed in this work to bring an efficient help for the planning and installation of wind energy conversion systems (WECS) at those localities. Mean seasonal and diurnal variations of wind direction and wind shear exponent have been derived. Two-parameter Weibull probability density functions (PDFs) fitting the observed monthly and annual wind speed relative frequency distributions have been implemented. As shown through three complementary statistical tests, the fitting technique was very satisfactory. A wind resource analysis at 10 m above ground level (AGL) has led to a mean power density at Bujumbura which is almost thirteen fold higher than at Muyinga. The use of the empirical power law to extrapolate wind characteristics at heights from 150 to 350 m AGL has shown that energy potential of hilltops around Muyinga was only suitable for small, individual scale wind energy applications. At the opposite, wind energy potential of ridge-tops and hilltops around Bujumbura has been found suitable for medium and large scale electricity production. For that locality and at those heights, energy outputs and capacity factors (CF or C<sub>f</sub>) have been computed for ten selected wind turbines (WTs), together with costs of electricity (COE) using the present value of cost (PVC) method. Amongst those WTs, YDF-1500-87 and S95-2.1 MW have emerged as the best options for installation owing to their highest CF and lowest COE. Moreover, an analysis of those two quantities at monthly basis for YDF-1500-87 WT has led to its best performance in the dry season. Compared to the average present COE of household hydroelectricity consumption, results of this study have evidenced economical feasibility and benefit of WECS setting in selected Burundian sites in order to supplement traditional electricity sources.