期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Updated Lithological Map in the Forest Zone of the Centre, South and East Regions of Cameroon Using Multilayer Perceptron Neural Network and Landsat Images
1
作者 Charlie Gael Atangana Otele mathias Akong onabid +1 位作者 Patrick Stephane Assembe Marcellin Nkenlifack 《Journal of Geoscience and Environment Protection》 2021年第6期120-134,共15页
The Multilayer Perceptron Neural Network (MLPNN) induction technique has been successfully applied to a variety of machine learning tasks, including the extraction and classification of image features. However, not mu... The Multilayer Perceptron Neural Network (MLPNN) induction technique has been successfully applied to a variety of machine learning tasks, including the extraction and classification of image features. However, not much has been done in the application of MLPNN on images obtained by remote sensing. In this article, two automatic classification systems used in image feature extraction and classification from remote sensing data are presented. The first is a combination of two models: a MLPNN induction technique, integrated under ENVI (Environment for Visualizing Images) platform for classification, and a pre-processing model including dark subtraction for the calibration of the image, the Principal Components Analysis (PCA) for band selections and Independent Components Analysis (ICA) as blind source separator for feature extraction of the Landsat image. The second classification system is a MLPNN induction technique based on the Keras platform. In this case, there was no need for pre-processing model. Experimental results show the two classification systems to outperform other typical feature extraction and classification methods in terms of accuracy for some lithological classes including Granite1 class with the highest class accuracies of 96.69% and 92.69% for the first and second classification system respectively. Meanwhile, the two classification systems perform almost equally with the overall accuracies of 53.01% and 49.98% for the first and second models respectively </span><span style="font-family:Verdana;">though the keras model has the advantage of not integrating the pre-processing</span><span style="font-family:Verdana;"> model, hence increasing its efficiency. The application of these two systems to the study area resulted in the generation of an updated geological mapping with six lithological classes detected including the Gneiss, the Micaschist, the Schist and three versions of Granites (Granite1, Granite2 and Granite3). 展开更多
关键词 Neural Network Multilayer Perceptron Principal Components Analysis Independent Components Analysis Lithological Classification Geological Mapping
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部