To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize performan...To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize performance under a given power budget by distributing the available power according to the relative GPU utilization. Time series forecasting methods were used to develop workload prediction models that provide accurate prediction of GPU utilization during application execution. Experiments were performed on a multi-GPU computing platform DGX-1 equipped with eight NVIDIA V100 GPUs used for quantum chemistry calculations in the GAMESS package. For a limited power budget, the proposed strategy may deliver as much as hundred times better GAMESS performance than that obtained when the power is distributed equally among all the GPUs.展开更多
To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize energy sa...To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize energy savings under a given performance degradation. Machine learning techniques were utilized to develop performance models which would provide accurate performance prediction with change in operating core-uncore frequency. Experiments, performed on a node (28 cores) of a modern computing platform showed significant energy savings of as much as 26% with performance degradation of as low as 5% under the proposed strategy compared with the execution in the unlimited power case.展开更多
To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to distribute a given...To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to distribute a given power allocation among the cluster nodes assigned to the application while balancing their performance change. The strategy operates in a timeslice-based manner to estimate the current application performance and power usage per node followed by power redistribution across the nodes. Experiments, performed on four nodes (112 cores) of a modern computing platform interconnected with Infiniband showed that even a significant power budget reduction of 20% may result in a performance degradation of as low as 1% under the proposed strategy compared with the execution in the unlimited power case.展开更多
文摘To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize performance under a given power budget by distributing the available power according to the relative GPU utilization. Time series forecasting methods were used to develop workload prediction models that provide accurate prediction of GPU utilization during application execution. Experiments were performed on a multi-GPU computing platform DGX-1 equipped with eight NVIDIA V100 GPUs used for quantum chemistry calculations in the GAMESS package. For a limited power budget, the proposed strategy may deliver as much as hundred times better GAMESS performance than that obtained when the power is distributed equally among all the GPUs.
文摘To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize energy savings under a given performance degradation. Machine learning techniques were utilized to develop performance models which would provide accurate performance prediction with change in operating core-uncore frequency. Experiments, performed on a node (28 cores) of a modern computing platform showed significant energy savings of as much as 26% with performance degradation of as low as 5% under the proposed strategy compared with the execution in the unlimited power case.
文摘To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to distribute a given power allocation among the cluster nodes assigned to the application while balancing their performance change. The strategy operates in a timeslice-based manner to estimate the current application performance and power usage per node followed by power redistribution across the nodes. Experiments, performed on four nodes (112 cores) of a modern computing platform interconnected with Infiniband showed that even a significant power budget reduction of 20% may result in a performance degradation of as low as 1% under the proposed strategy compared with the execution in the unlimited power case.