The Jiangmen Underground Neutrino Observatory(JUNO)is a large liquid scintillator detector designed to explore many topics in fundamental physics.In this study,the potential of searching for proton decay in the p→νK...The Jiangmen Underground Neutrino Observatory(JUNO)is a large liquid scintillator detector designed to explore many topics in fundamental physics.In this study,the potential of searching for proton decay in the p→νK^(+)mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification.Moreover,the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals.Based on these advantages,the detection efficiency for the proton decay via p→νK^(+)is 36.9%±4.9%with a background level of 0.2±0.05(syst)±0.2(stat)events after 10 years of data collection.The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 years,which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies.展开更多
AIM To examine the associations between mental disorders and infectious, atopic, inflammatory diseases while adjusting for other risk factors.METHODS We used data from PsyC oL aus, a large Swiss Population Cohort Stud...AIM To examine the associations between mental disorders and infectious, atopic, inflammatory diseases while adjusting for other risk factors.METHODS We used data from PsyC oL aus, a large Swiss Population Cohort Study(n = 3720; age range 35-66). Lifetime diagnoses of mental disorders were grouped into the following categories: Neurodevelopmental, anxiety(early and late onset), mood and substance disorders. They were regressed on infectious, atopic and other inflammatory diseases adjusting for sex, educational level, familial aggregation, childhood adversities and traumatic experiences in childhood. A multivariate logistic regression was applied to each group of disorders. In a complementary analysis interactions with sex were introduced via nested effects. RESULTS Associations with infectious, atopic and other chronic inflammatory diseases were observable together with consistent effects of childhood adversities and familial aggregation, and less consistent effects of trauma in each group of mental disorders. Streptococcal infections were associated with neurodevelopmental disorders(men), and measles/mumps/rubella-infections with early and late anxiety disorders(women). Gastric inflammatory diseases took effect in mood disorders(both sexes) and in early disorders(men). Similarly, irritable bowel syndrome was prominent in a sex-specific way in mood disorders in women, and, moreover, was associated with early and late anxiety disorders. Atopic diseases were associated with late anxiety disorders. Acne(associations with mood disorders in men) and psoriasis(associations with early anxiety disorders in men and mood disorders in women) contributed sex-specific results. Urinary tract infections were associated with mood disorders and, in addition, in a sex-specific way with late anxiety disorders(men), and neurodevelopmental and early anxiety disorders(women).CONCLUSION Infectious, atopic and inflammatory diseases areimportant risk factors for all groups of mental disorders. The sexual dimorphism of the associations is展开更多
The Jiangmen Underground Neutrino Observatory(JUNO)features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector.Some of JUNO's features make it an excellent location for^8B solar neut...The Jiangmen Underground Neutrino Observatory(JUNO)features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector.Some of JUNO's features make it an excellent location for^8B solar neutrino measurements,such as its low-energy threshold,high energy resolution compared with water Cherenkov detectors,and much larger target mass compared with previous liquid scintillator detectors.In this paper,we present a comprehensive assessment of JUNO's potential for detecting^8B solar neutrinos via the neutrino-electron elastic scattering process.A reduced 2 MeV threshold for the recoil electron energy is found to be achievable,assuming that the intrinsic radioactive background^(238)U and^(232)Th in the liquid scintillator can be controlled to 10^(-17)g/g.With ten years of data acquisition,approximately 60,000 signal and 30,000 background events are expected.This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter,which will shed new light on the inconsistency between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework.IfDelta m^(2)_(21)=4.8times10^(-5);(7.5times10^(-5))eV^(2),JUNO can provide evidence of neutrino oscillation in the Earth at approximately the 3sigma(2sigma)level by measuring the non-zero signal rate variation with respect to the solar zenith angle.Moreover,JUNO can simultaneously measureDelta m^2_(21)using^8B solar neutrinos to a precision of 20% or better,depending on the central value,and to sub-percent precision using reactor antineutrinos.A comparison of these two measurements from the same detector will help understand the current mild inconsistency between the value of Delta m^2_(21)reported by solar neutrino experiments and the KamLAND experiment.展开更多
基金supported by the Chinese Academy of Sciencesthe National Key R&D Program of China+22 种基金the CAS Center for Excellence in Particle PhysicsWuyi Universitythe Tsung-Dao Lee Institute of Shanghai Jiao Tong University in Chinathe Institut National de Physique Nucléaire et de Physique de Particules (IN2P3) in Francethe Istituto Nazionale di Fisica Nucleare (INFN) in Italythe Italian-Chinese collaborative research program MAECI-NSFCthe Fond de la Recherche Scientifique (F.R.S-FNRS)FWO under the "Excellence of Science-EOS" in Belgiumthe Conselho Nacional de Desenvolvimento Científico e Tecnològico in Brazilthe Agencia Nacional de Investigacion y Desarrollo in Chilethe Charles University Research Centrethe Ministry of Education,Youth,and Sports in Czech Republicthe Deutsche Forschungsgemeinschaft (DFG)the Helmholtz Associationthe Cluster of Excellence PRISMA+ in Germanythe Joint Institute of Nuclear Research (JINR)Lomonosov Moscow State University in Russiathe joint Russian Science Foundation (RSF)National Natural Science Foundation of China (NSFC) research programthe MOST and MOE in Taiwan,Chinathe Chulalongkorn UniversitySuranaree University of Technology in Thailandthe University of California at Irvine in USA
文摘The Jiangmen Underground Neutrino Observatory(JUNO)is a large liquid scintillator detector designed to explore many topics in fundamental physics.In this study,the potential of searching for proton decay in the p→νK^(+)mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification.Moreover,the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals.Based on these advantages,the detection efficiency for the proton decay via p→νK^(+)is 36.9%±4.9%with a background level of 0.2±0.05(syst)±0.2(stat)events after 10 years of data collection.The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 years,which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies.
基金Supported by Research grants from GlaxoSmithKlinethe Faculty of Biology and Medicine of Lausannethe Swiss National Science Foundation,Nos.3200B0-105993,3200B0-118308,33CSCO-122661,33CS30-139468 and 33CS30-148401
文摘AIM To examine the associations between mental disorders and infectious, atopic, inflammatory diseases while adjusting for other risk factors.METHODS We used data from PsyC oL aus, a large Swiss Population Cohort Study(n = 3720; age range 35-66). Lifetime diagnoses of mental disorders were grouped into the following categories: Neurodevelopmental, anxiety(early and late onset), mood and substance disorders. They were regressed on infectious, atopic and other inflammatory diseases adjusting for sex, educational level, familial aggregation, childhood adversities and traumatic experiences in childhood. A multivariate logistic regression was applied to each group of disorders. In a complementary analysis interactions with sex were introduced via nested effects. RESULTS Associations with infectious, atopic and other chronic inflammatory diseases were observable together with consistent effects of childhood adversities and familial aggregation, and less consistent effects of trauma in each group of mental disorders. Streptococcal infections were associated with neurodevelopmental disorders(men), and measles/mumps/rubella-infections with early and late anxiety disorders(women). Gastric inflammatory diseases took effect in mood disorders(both sexes) and in early disorders(men). Similarly, irritable bowel syndrome was prominent in a sex-specific way in mood disorders in women, and, moreover, was associated with early and late anxiety disorders. Atopic diseases were associated with late anxiety disorders. Acne(associations with mood disorders in men) and psoriasis(associations with early anxiety disorders in men and mood disorders in women) contributed sex-specific results. Urinary tract infections were associated with mood disorders and, in addition, in a sex-specific way with late anxiety disorders(men), and neurodevelopmental and early anxiety disorders(women).CONCLUSION Infectious, atopic and inflammatory diseases areimportant risk factors for all groups of mental disorders. The sexual dimorphism of the associations is
基金This work was supported by the Chinese Academy of Sciences,the National Key R&D Program of China,the CAS Center for Excellence in Particle Physics,the Joint Large Scale Scientific Facility Funds of the NSFC and CAS,Wuyi University,and the Tsung-Dao Lee Instiute of Shanghai Jiao Tong University in China,the In stiut National de Physique Nucleaire et de Physique de Particules(IN2P3)in France,the Istituto Nazionale di Fisica Nucleare(INFN)in Italy,the Fond de la Recherche Scintifique(F.R.S-FNRS)and FWO under the"Excellence of Science-EOS"in Belgium,the Conselho Nacional de Desenvolvimento Cientificoce Tecnologico in Brazil,the Agencia Nacional de Investigacion y Desrrollo in Chile,the Charles University Research Centre and the Ministry of Education,Youth,and Sports in Czech Republic,the Deutsche Forschungsgemeinschaft(DFG),the Helmholtz Association,and the Cluster of Exellence PRISMA+in Germany,the Joint Institute of Nuclear Research(JINR),Lomonosov Moscow State University,and Russian Foundation for Basic Research(RFBR)in Russia,the MOST and MOE in Taiwan,the Chu-lalongkorm University and Suranaree University of Technology in Thailand,and the University of aliformia at Irvine in USA.
文摘The Jiangmen Underground Neutrino Observatory(JUNO)features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector.Some of JUNO's features make it an excellent location for^8B solar neutrino measurements,such as its low-energy threshold,high energy resolution compared with water Cherenkov detectors,and much larger target mass compared with previous liquid scintillator detectors.In this paper,we present a comprehensive assessment of JUNO's potential for detecting^8B solar neutrinos via the neutrino-electron elastic scattering process.A reduced 2 MeV threshold for the recoil electron energy is found to be achievable,assuming that the intrinsic radioactive background^(238)U and^(232)Th in the liquid scintillator can be controlled to 10^(-17)g/g.With ten years of data acquisition,approximately 60,000 signal and 30,000 background events are expected.This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter,which will shed new light on the inconsistency between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework.IfDelta m^(2)_(21)=4.8times10^(-5);(7.5times10^(-5))eV^(2),JUNO can provide evidence of neutrino oscillation in the Earth at approximately the 3sigma(2sigma)level by measuring the non-zero signal rate variation with respect to the solar zenith angle.Moreover,JUNO can simultaneously measureDelta m^2_(21)using^8B solar neutrinos to a precision of 20% or better,depending on the central value,and to sub-percent precision using reactor antineutrinos.A comparison of these two measurements from the same detector will help understand the current mild inconsistency between the value of Delta m^2_(21)reported by solar neutrino experiments and the KamLAND experiment.