凝胶聚合物电解质(GPE)因其优良的热稳定性和卓越的电化学性能而具备增强锂离子电池性能的潜力,从而受到越来越多的认可.尽管其具有上述优点,但传统GPE的实际应用通常因其溶胀性和有限的机械强度而受到阻碍.为了解决这些问题,本项研究...凝胶聚合物电解质(GPE)因其优良的热稳定性和卓越的电化学性能而具备增强锂离子电池性能的潜力,从而受到越来越多的认可.尽管其具有上述优点,但传统GPE的实际应用通常因其溶胀性和有限的机械强度而受到阻碍.为了解决这些问题,本项研究工作提出了一种通过简单方法构建的刚柔并济的仿生GPE,由聚环氧乙烷(PEO)和聚偏二氟乙烯-六氟丙烯(PVDF-HFP)组成并通过Kevlar纤维织物进行增强.所得的PEO/PVDF-HFP/Kevlar(PPK)GPE表现出2.815 mS cm^(−1)的优异离子电导率和0.571的锂离子迁移数,以及32.59 MPa的超高机械强度.这些特性有助于防止锂枝晶生长并增强LiFePO4电池的电化学性能,从而实现稳定的循环性能.PPK GPE可以为高性能锂离子电池的各种实际应用提供理论基础.展开更多
通过大型恒刚度直剪仪,研究粗糙度对黏性土-混凝土界面剪切力学性能的影响。对粗糙度为Ⅰ、Ⅱ、Ⅲ、Ⅳ4个等级的混凝土界面分别施加25,50,100,150 k Pa的法向应力,探寻界面粗糙度对黏性土-混凝土界面剪切应力和强度参数的影响规律。结...通过大型恒刚度直剪仪,研究粗糙度对黏性土-混凝土界面剪切力学性能的影响。对粗糙度为Ⅰ、Ⅱ、Ⅲ、Ⅳ4个等级的混凝土界面分别施加25,50,100,150 k Pa的法向应力,探寻界面粗糙度对黏性土-混凝土界面剪切应力和强度参数的影响规律。结果表明:界面剪应力-剪切位移曲线呈现折线形和双曲线形,应变软化现象较明显;界面法向应力越大,最大剪应力和破坏剪切位移越大;界面粗糙度等级越高,最大剪应力和破坏剪切位移越大,在法向应力为150 k Pa时,Ⅳ级界面和Ⅰ级界面曲线达到峰值时,最大剪应力分别为94.57,67.14 k Pa,最大剪应力的破坏剪切位移分别为15.80,10.42 mm;Ⅳ级界面摩擦角和黏聚力分别是Ⅰ级界面的1.3,1.46倍,界面粗糙度等级越高,界面摩擦有效系数和黏聚力有效系数越大。展开更多
基金supported by the Huaneng Clean Energy Research Institute Found Project(CERI/TU-23-CERI01).
文摘凝胶聚合物电解质(GPE)因其优良的热稳定性和卓越的电化学性能而具备增强锂离子电池性能的潜力,从而受到越来越多的认可.尽管其具有上述优点,但传统GPE的实际应用通常因其溶胀性和有限的机械强度而受到阻碍.为了解决这些问题,本项研究工作提出了一种通过简单方法构建的刚柔并济的仿生GPE,由聚环氧乙烷(PEO)和聚偏二氟乙烯-六氟丙烯(PVDF-HFP)组成并通过Kevlar纤维织物进行增强.所得的PEO/PVDF-HFP/Kevlar(PPK)GPE表现出2.815 mS cm^(−1)的优异离子电导率和0.571的锂离子迁移数,以及32.59 MPa的超高机械强度.这些特性有助于防止锂枝晶生长并增强LiFePO4电池的电化学性能,从而实现稳定的循环性能.PPK GPE可以为高性能锂离子电池的各种实际应用提供理论基础.
文摘通过大型恒刚度直剪仪,研究粗糙度对黏性土-混凝土界面剪切力学性能的影响。对粗糙度为Ⅰ、Ⅱ、Ⅲ、Ⅳ4个等级的混凝土界面分别施加25,50,100,150 k Pa的法向应力,探寻界面粗糙度对黏性土-混凝土界面剪切应力和强度参数的影响规律。结果表明:界面剪应力-剪切位移曲线呈现折线形和双曲线形,应变软化现象较明显;界面法向应力越大,最大剪应力和破坏剪切位移越大;界面粗糙度等级越高,最大剪应力和破坏剪切位移越大,在法向应力为150 k Pa时,Ⅳ级界面和Ⅰ级界面曲线达到峰值时,最大剪应力分别为94.57,67.14 k Pa,最大剪应力的破坏剪切位移分别为15.80,10.42 mm;Ⅳ级界面摩擦角和黏聚力分别是Ⅰ级界面的1.3,1.46倍,界面粗糙度等级越高,界面摩擦有效系数和黏聚力有效系数越大。