Gastric cancer(GC) is one of the most prevalent malignant types in the world and an aggressive disease with a poor 5-year survival. This cancer is biologically and genetically heterogeneous with a poorly understood ca...Gastric cancer(GC) is one of the most prevalent malignant types in the world and an aggressive disease with a poor 5-year survival. This cancer is biologically and genetically heterogeneous with a poorly understood carcinogenesis at the molecular level. Although the incidence is declining, the outcome of patients with GC remains dismal. Thus, the detection at an early stage utilizing useful screening approaches, selection of an appropriate treatment plan, and effective monitoring is pivotal to reduce GC mortalities. Identification of biomarkers in a basis of clinical information and comprehensive genome analysis could improve diagnosis, prognosis, prediction of recurrence and treatment response. This review summarized the current status and approaches in GC biomarker, which could be potentially used for early diagnosis, accurate prediction of therapeutic approaches and discussed the future perspective based on the molecular classification and profiling.展开更多
Gastric cancer is one of the most frequent and lethal malignancies worldwide because of high frequency of metastasis. Tumor cell motility and invasion play fundamental roles in cancer metastasis. Recent studies have r...Gastric cancer is one of the most frequent and lethal malignancies worldwide because of high frequency of metastasis. Tumor cell motility and invasion play fundamental roles in cancer metastasis. Recent studies have revealed that the Rho/Rho-associated protein kinases(ROCK) pathway plays a critical role in the regulation of cancer cell motility and invasion. In addition,the Rho/ROCK pathway plays important roles in invasion and metastasis on the basis of its predominant function of cell cytoskeletal regulation in gastric cancer. According to the current understanding of tumor motility,there are two modes of tumor cell movement:mesenchymal and amoeboid. In addition,cancer cell movement can be interchangeable between the mesenchymal and amoeboid movements under certain conditions. Control of cell motility through the actin cytoskeleton creates the potential for regulating tumor cell metastasis. In this review we discuss Rho GTPases and ROCK signaling and describe the mechanisms of Rho/ROCK activity with regard to motility and metastasis in gastric cancer.In addition,we provide an insight of the therapeutic potential of targeting the Rho/ROCK pathway.展开更多
Remnant gastric cancer(RGC) and gastric stump cancer after distal gastrectomy(DG) are recognized as the same clinical entity. In this review, the current knowledges as well as the non-settled issues of RGC are present...Remnant gastric cancer(RGC) and gastric stump cancer after distal gastrectomy(DG) are recognized as the same clinical entity. In this review, the current knowledges as well as the non-settled issues of RGC are presented. Duodenogastric reflux and denervation of the gastric mucosa are considered as the two main factors responsible for the development of RGC after benign disease. On the other hand, some precancerous circumstances which already have existed at the time of initial surgery, such as atrophic gastritis and intestinal metaplasia, are the main factors associated with RGC after gastric cancer. Although eradication of Helicobacter pylori(H. pylori) in remnant stomach is promising, it is still uncertain whether it can reduce the risk of carcinogenesis. Periodic endoscopic surveillance after DG was reported useful in detecting RGC at an early stage, which offers a chance to undergo minimally invasive endoscopic treatment or laparoscopic surgery and leads to an improved prognosis in RGC patients. Future challenges may be expected to elucidate the benefit of eradication of H. pylori in the remnant stomach if it could reduce the risk for RGC, to build an optimal endoscopic surveillance strategy after DG by stratifying the risk for development of RGC, and to develop a specific staging system for RGC for the standardization of the treatment by prospecting the prognosis.展开更多
The Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 surface has been modified with H3PO4. After coating at 80 ℃, the products were heated further at a moderate temperature of 500 ℃ in air, when the added H3PO4 transformed to Li3PO4 a...The Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 surface has been modified with H3PO4. After coating at 80 ℃, the products were heated further at a moderate temperature of 500 ℃ in air, when the added H3PO4 transformed to Li3PO4 after reacting with residual LiOH and Li2CO3 on the surface. A thin and uniform smooth nanolayer (〈 10 nm) was observed on the surface of Li[Ni0.6Co0.2Mn0.2]O2 as confirmed by transmission electron microscopy (TEM). Time-of-flight secondary ion mass spectroscopic (ToF-SIMS) data exhibit the presence of LIP+, LiPO-, and Li2PO2+ fragments, indicating the formation of the Li3PO4 coating layer on the surface of the Li[Ni0.6Co0.2Mn0.2]O2. As a result, the amounts of residual lithium compounds, such as LiOH and Li2CO3, are significantly reduced. As a consequence, the LigPO4-coated Li[Ni0.6Co0.2Mn0.2]O2 exhibits noticeable improvement in capacity retention and rate capability due to the reduction of residual LiOH and Li2CO3. Further investigation of the extensively cycled electrodes by X-ray diffraction (XRD), TEM, and ToF-SIMS demonstrated that the LiBPO4 coating layers have multi-functions: Absorption of water in the electrolyte that lowers the HF level, HF scavenging, and protection of the active materials from deleterious side reactions with the electrolyte during extensive cycling, enabling high capacity retention over 1,000 cycles.展开更多
Gastric cancer(GC)remains a leading cause of cancer-related death worldwide.Less than half of GC cases are diagnosed at an advanced stage due to its lack of early symptoms.GC is a heterogeneous disease associated with...Gastric cancer(GC)remains a leading cause of cancer-related death worldwide.Less than half of GC cases are diagnosed at an advanced stage due to its lack of early symptoms.GC is a heterogeneous disease associated with a number of genetic and somatic mutations.Early detection and effective monitoring of tumor progression are essential for reducing GC disease burden and mortality.The current widespread use of semi-invasive endoscopic methods and radiologic approaches has increased the number of treatable cancers:However,these approaches are invasive,costly,and time-consuming.Thus,novel molecular noninvasive tests that detect GC alterations seem to be more sensitive and specific compared to the current methods.Recent technological advances have enabled the detection of blood-based biomarkers that could be used as diagnostic indicators and for monitoring postsurgical minimal residual disease.These biomarkers include circulating DNA,RNA,extracellular vesicles,and proteins,and their clinical applications are currently being investigated.The identification of ideal diagnostic markers for GC that have high sensitivity and specificity would improve survival rates and contribute to the advancement of precision medicine.This review provides an overview of current topics regarding the novel,recently developed diagnostic markers for GC.展开更多
Numerical simulation of injection of polyethylene fluid in a variable cross-section nano-channel was carried out using the molecular dynamics method.The effects of the nano-channel cross-section and the external force...Numerical simulation of injection of polyethylene fluid in a variable cross-section nano-channel was carried out using the molecular dynamics method.The effects of the nano-channel cross-section and the external force on the rheological behavior and structural properties of the polyethylene fluid were investigated.It was found that an absorbed layer appeared near the wall and the thickness of the absorbed layer increased with increasing cone angle of the nano-channel.The injection distance of the polyethylene fluid decreased with increasing cone angle and decreasing external force.In the nano-channel with cone angle 45°,polyethylene particles uniformly filled the whole channel and were stretched along the flow direction.Uniaxial stretching of particles was enhanced when the external force was strengthened,which facilitates injection of the polyethylene fluid into the nano-channel.展开更多
Aims Recent studies have shown that alpine meadows on the Qinghai-Tibetan plateau act as significant CO_(2)sinks.On the plateau,alpine shrub meadow is one of typical grassland ecosystems.The major alpine shrub on the ...Aims Recent studies have shown that alpine meadows on the Qinghai-Tibetan plateau act as significant CO_(2)sinks.On the plateau,alpine shrub meadow is one of typical grassland ecosystems.The major alpine shrub on the plateau is Potentilla fruticosa L.(Rosaceae),which is distributed widely from 3200 to 4000 m.Shrub species play an important role on carbon sequestration in grassland ecosystems.In addition,alpine shrubs are sensitive to climate change such as global warming.Considering global warming,the biomass and productivity of P.fruticosa will increase on Qinghai-Tibetan Plateau.Thus,understanding the carbon dynamics in alpine shrub meadow and the role of shrubs around the upper distribution limit at present is essential to predict the change in carbon sequestration on the plateau.However,the role of shrubs on the carbon dynamics in alpine shrub meadow remains unclear.The objectives of the present study were to evaluate the magnitude of CO_(2)exchange of P.fruticosa shrub patches around the upper distribution limit and to elucidate the role of P.fruticosa on ecosystem CO_(2)fluxes in an alpine meadow.Methods We used the static acrylic chamber technique to measure and estimate the net ecosystem productivity(NEP),ecosystem respiration(Re),and gross primary productivity(GPP)of P.fruticosa shrub patches at three elevations around the species’upper distribution limit.Ecosystem CO_(2)fluxes and environmental factors were measured from 17 to 20 July 2008 at 3400,3600,and 3800 m a.s.l.We examined the maximum GPP at infinite light(GPPmax)and maximum Re(Remax)during the experimental time at each elevation in relation to aboveground biomass and environmental factors,including air and soil temperature,and soil water content.Important Findings Patches of P.fruticosa around the species’upper distribution limit absorbed CO_(2),at least during the daytime.Maximum NEP at infinite light(NEPmax)and GPPmax of shrub patches in the alpine meadow varied among the three elevations,with the highest values at 3400 m and the lowest a展开更多
Solid oxide cells(SOCs)have attracted great attention in the past decades because of their high conversion efficiency,low environmental pollution and diversified fuel options.Nickel-based catalysts are the most widely...Solid oxide cells(SOCs)have attracted great attention in the past decades because of their high conversion efficiency,low environmental pollution and diversified fuel options.Nickel-based catalysts are the most widely used fuel electrode materials for SOCs due to the low price and high activity.However,when hydrocarbon fuels are employed,nickel-based electrodes face serious carbon deposition challenges,leading to a rapid decline of cell performance.Great efforts have been devoted to understanding the occurrence of the coking reaction,and to improving the stability of the electrodes in hydrocarbon fuels.In this review,we summarize recent research progress of utilizing surface modification to improve the stability and activity of Ni-based electrodes for SOCs by preventing carbon coking.The review starts with a briefly introduction about the reaction mechanism of carbon deposition,followed by listing several surface modification technologies and their working principles.Then we introduce representative works using surface modification strategies to prevent carbon coking on Ni-based electrodes.Finally,we highlight future direction of improving electrode catalytic activity and anti-coking performance through surface engineering.展开更多
Gadolinium-doped ceria(GDC)interlayers are required to prevent the interfacial reaction between La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)cathode and Y_(2)O_(3)-stabilized ZrO 2(YSZ)electrolyte in solid oxide fuel ce...Gadolinium-doped ceria(GDC)interlayers are required to prevent the interfacial reaction between La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)cathode and Y_(2)O_(3)-stabilized ZrO 2(YSZ)electrolyte in solid oxide fuel cells(SOFCs).However,it's difficult to prepare a thin and dense GDC interlayer on the sintered half-cell at a low temperature.In this study,the physical vapor deposition(PVD)method was employed to success-fully manufacture dense GDC interlayers with the thickness of 1 m m.The influences of GDC sintering temperature(900℃,1000℃ and 1100℃)on cell performance characteristics and degradation behavior were investigated.The cell with GDC interlayer sintered at 1100?C showed the lowest degradation rate during the 216-h operation.The best stability was attributed to the most effective inhibition of Sr diffusion by the GDC interlayer,which was demonstrated by the almost unchanged Ohmic and polari-zation resistances during the aging stage and the negligible Sr enrichment at YSZ/GDC interface.Compared to the conventional screen-printed GDC interlayers(sintered above 1250℃),the GDC inter-layer prepared by the PVD method and sintered at 1100℃ was significantly denser and thinner,showing a promising application prospect due to its benefits for cell stability.展开更多
Gastrointestinal(GI)cancer remains the deadliest cancer in the world.The current standard treatment for GI cancer focuses on 5-fluorouracil-based chemotherapeutic regimens and surgery,and molecular-targeted therapy is...Gastrointestinal(GI)cancer remains the deadliest cancer in the world.The current standard treatment for GI cancer focuses on 5-fluorouracil-based chemotherapeutic regimens and surgery,and molecular-targeted therapy is expected to be a more effective and less toxic therapeutic strategy for GI cancer.There is wellestablished evidence for the use of epidermal growth factor receptor-targeted and vascular endothelial growth factor-targeted antibodies,which should routinely be incorporated into treatment strategies for GI cancer.Other potential therapeutic targets involve the PI3K/AKT pathway,tumor growth factor-βpathway,mesenchymal-epithelial transition pathway,WNT pathway,poly(ADP-ribose)polymerase,and immune checkpoints.Many clinical trials assessing the agents of targeted therapy are underway and have presented promising and thoughtprovoking results.With the development of molecular biology techniques,we can identify more targetable molecular alterations in larger patient populations with GI cancer.Targeting these molecules will allow us to reach the goal of precision medicine and improve the outcomes of patients with GI cancer.展开更多
A new high repetition rate Nd:YAG Thomson scattering system is developed for the Heliotron J helical device. A main purpose of installing the new system is the temporal evolution measurement of a plasma profile for i...A new high repetition rate Nd:YAG Thomson scattering system is developed for the Heliotron J helical device. A main purpose of installing the new system is the temporal evolution measurement of a plasma profile for improved confinement physics such as the edge transport barrier (H-mode) or the internal transport barrier of the helical plasma. The system has 25 spatial points with -10 mm resolution. Two high repetition Nd:YAG lasers (〉 550 m J@ 50 Hz) realize the measurement of the time evolution of the plasma profile with ~10 ms time intervals. Scattered light is collected by a large concave mirror (D----800 mm, f/2.25) with a solid angle of -100 mstr and transferred to interference filter polychromators by optical fiber bundles in a staircase form. The signal is amplified by newly designed fast preamplifiers with DC and AC output, which reduces the low frequency background noise. The signals are digitized with a multi-event QDC, fast gated integrators. The data acquisition is performed by a VME-based system operated by the CINOS.展开更多
By using a novel surface modification technique named ultrasonic-electropulsing coupling rolling (UECR) process on an Al-Si casting alloy rod, the surface of material was smoothened significantly. Meanwhile, a stren...By using a novel surface modification technique named ultrasonic-electropulsing coupling rolling (UECR) process on an Al-Si casting alloy rod, the surface of material was smoothened significantly. Meanwhile, a strengthened layer with agradient change in hardness was obtained in the outer surface, corresponding to a homogeneous gradient nano-/micro-structure. The thickness of nanometer-thick laminated structures was at least 40 μm, which was much thicker thanconventional ultrasonic rolling process. During UECR, the formation of the well-defined nanocrystalline structure wasattributed to the high strain rate and simultaneous annealing process realized by ultrasonic impact and electropulsingtreatment.展开更多
Recent progress in plasma control studies on the improvement of plasma performance in Heliotron J is reviewed. The supersonic molecular beam injection (SMBI) fueling is successfully applied to Heliotron J plasma. A ...Recent progress in plasma control studies on the improvement of plasma performance in Heliotron J is reviewed. The supersonic molecular beam injection (SMBI) fueling is successfully applied to Heliotron J plasma. A supersonic H2-beam is effectively injected to increase fueling efficiency and generate a peaked density profile. Local fueling with a short-pulsed SMBI can increase the core plasma density and avoid the degradation arising from edge cooling. Second harmonic electron cyclotron current drive (ECCD) experiments were conducted by launching a focused Gaussian beam with a parallel refractive index of -0.05 ≤ Nil 〈 0.6. Results show that the electron cyclotron (EC) driven current is determined not only by Nil but also by local magnetic field (B) structure where the EC power is deposited. Detailed analysis of the observed NI and B dependences is in progress with a ray-tracing simulation using the TRAVIS code. Fast ion velocity distribution was investigated using fast protons generated by ion cyclotron resonant frequency (ICRF) minority heating. For the standard configuration in Heliotron J, charge ex- change neutral particle analysis (CX-NPA) measurements show higher effective temperature of fast minority protons in the on-axis resonance case compared to that in the HFS (high field side) off-axis resonance case. However, the increase in bulk ion temperature in the HFS resonance case is larger than that in the on-axis resonance.展开更多
Leiomyosarcoma of the inferior vena cava (IVC) is a rare tumor, and it needs complete surgical resection for cure. In addition, the reconstruction of IVC is necessary in many cases. Herein, we indicate the case of a 5...Leiomyosarcoma of the inferior vena cava (IVC) is a rare tumor, and it needs complete surgical resection for cure. In addition, the reconstruction of IVC is necessary in many cases. Herein, we indicate the case of a 57-year-old female with leiomyosarcoma in segment I of the IVC, which grew deep into vascular lumen. She underwent complete en bloc resection of the tumor and IVC reconstruction by an artificial pericardium patch.展开更多
The association between ulcerative colitis(UC) and colorectal cancer(CRC) has been acknowledged. One of the most serious and life threatening consequences of UC is the development of CRC(UC-CRC). UC-CRC patients are y...The association between ulcerative colitis(UC) and colorectal cancer(CRC) has been acknowledged. One of the most serious and life threatening consequences of UC is the development of CRC(UC-CRC). UC-CRC patients are younger, more frequently have multiple cancerous lesions, and histologically show mucinous or signet ring cell carcinomas. The risk of CRC begins to increase 8 or 10 years after the diagnosis of UC. Risk factors for CRC with UC patients include young age at diagnosis, longer duration, greater anatomical extent of colonic involvement, the degree of inflammation, family history of CRC, and presence of primary sclerosing cholangitis. CRC on the ground of UC develop from non-dysplastic mucosa to indefinite dysplasia, lowgrade dysplasia, high-grade dysplasia and finally to invasive adenocarcinoma. Colonoscopy surveillance programs are recommended to reduce the risk of CRC and mortality in UC. Genetic alterations might play a role in the development of UC-CRC. 5-aminosalicylates might represent a favorable therapeutic option for chemoprevention of CRC.展开更多
The sentinel node(SN) technique has been established for the treatment of some types of solid cancers to avoid unnecessary lymphadenectomy. If node disease were diagnosed before surgery, minimal surgery with omission ...The sentinel node(SN) technique has been established for the treatment of some types of solid cancers to avoid unnecessary lymphadenectomy. If node disease were diagnosed before surgery, minimal surgery with omission of lymph node dissection would be an option for patients with early gastric cancer. Although SN biopsy has been well ascertained in the treatment of breast cancer and melanoma, SN navigation surgery(SNNS) in gastric cancer has not been yet universal due to the complicated lymphatic flow from the stomach. Satisfactory establishment of SNNS will result in the possible indication of minimally invasive surgery of gastric cancer. However, the results reported in the literature on SN biopsy in gastric cancer are widely divergent and many issues are still to be resolved, such as the collection method of SN, detection of micrometastasis in SN, and clinical benefit. The difference in the procedural technique and learning phase of surgeons is also varied the accuracy of SN mapping. In this review, we outline the current status of application for SNNS in gastric cancer.展开更多
Recent advances in molecular targeted therapies, including targeting human epidermal growth factor receptor 2(HER2), had a major forward step in the therapy for gastric cancer patients. Application of HER2-targeted th...Recent advances in molecular targeted therapies, including targeting human epidermal growth factor receptor 2(HER2), had a major forward step in the therapy for gastric cancer patients. Application of HER2-targeted therapies, in particular trastuzumab in combination with chemotherapy in metastatic HER2-positive gastric cancers, resulted in improvements in response rates, time to progression and overall survival. Nevertheless, as with breast cancer, many patients with gastric cancer develop resistance to trastuzumab. Several promising therapies are currently being developed in combination with chemotherapy to increase the efficacy and overcome the cancerresistance. Here we review the current overview of clinical application of agents targeting HER2 in gastric cancer. We also discuss the ongoing trials supporting the use of HER2-targeted agents combined with cytotoxic agents or other monoclonal antibodies.展开更多
文摘Gastric cancer(GC) is one of the most prevalent malignant types in the world and an aggressive disease with a poor 5-year survival. This cancer is biologically and genetically heterogeneous with a poorly understood carcinogenesis at the molecular level. Although the incidence is declining, the outcome of patients with GC remains dismal. Thus, the detection at an early stage utilizing useful screening approaches, selection of an appropriate treatment plan, and effective monitoring is pivotal to reduce GC mortalities. Identification of biomarkers in a basis of clinical information and comprehensive genome analysis could improve diagnosis, prognosis, prediction of recurrence and treatment response. This review summarized the current status and approaches in GC biomarker, which could be potentially used for early diagnosis, accurate prediction of therapeutic approaches and discussed the future perspective based on the molecular classification and profiling.
基金Supported by KAKENHI Grant-in-Aid for Scientific Research,No.23390329the National Cancer Center Research and Development Fund,No.23-A-9
文摘Gastric cancer is one of the most frequent and lethal malignancies worldwide because of high frequency of metastasis. Tumor cell motility and invasion play fundamental roles in cancer metastasis. Recent studies have revealed that the Rho/Rho-associated protein kinases(ROCK) pathway plays a critical role in the regulation of cancer cell motility and invasion. In addition,the Rho/ROCK pathway plays important roles in invasion and metastasis on the basis of its predominant function of cell cytoskeletal regulation in gastric cancer. According to the current understanding of tumor motility,there are two modes of tumor cell movement:mesenchymal and amoeboid. In addition,cancer cell movement can be interchangeable between the mesenchymal and amoeboid movements under certain conditions. Control of cell motility through the actin cytoskeleton creates the potential for regulating tumor cell metastasis. In this review we discuss Rho GTPases and ROCK signaling and describe the mechanisms of Rho/ROCK activity with regard to motility and metastasis in gastric cancer.In addition,we provide an insight of the therapeutic potential of targeting the Rho/ROCK pathway.
文摘Remnant gastric cancer(RGC) and gastric stump cancer after distal gastrectomy(DG) are recognized as the same clinical entity. In this review, the current knowledges as well as the non-settled issues of RGC are presented. Duodenogastric reflux and denervation of the gastric mucosa are considered as the two main factors responsible for the development of RGC after benign disease. On the other hand, some precancerous circumstances which already have existed at the time of initial surgery, such as atrophic gastritis and intestinal metaplasia, are the main factors associated with RGC after gastric cancer. Although eradication of Helicobacter pylori(H. pylori) in remnant stomach is promising, it is still uncertain whether it can reduce the risk of carcinogenesis. Periodic endoscopic surveillance after DG was reported useful in detecting RGC at an early stage, which offers a chance to undergo minimally invasive endoscopic treatment or laparoscopic surgery and leads to an improved prognosis in RGC patients. Future challenges may be expected to elucidate the benefit of eradication of H. pylori in the remnant stomach if it could reduce the risk for RGC, to build an optimal endoscopic surveillance strategy after DG by stratifying the risk for development of RGC, and to develop a specific staging system for RGC for the standardization of the treatment by prospecting the prognosis.
文摘The Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 surface has been modified with H3PO4. After coating at 80 ℃, the products were heated further at a moderate temperature of 500 ℃ in air, when the added H3PO4 transformed to Li3PO4 after reacting with residual LiOH and Li2CO3 on the surface. A thin and uniform smooth nanolayer (〈 10 nm) was observed on the surface of Li[Ni0.6Co0.2Mn0.2]O2 as confirmed by transmission electron microscopy (TEM). Time-of-flight secondary ion mass spectroscopic (ToF-SIMS) data exhibit the presence of LIP+, LiPO-, and Li2PO2+ fragments, indicating the formation of the Li3PO4 coating layer on the surface of the Li[Ni0.6Co0.2Mn0.2]O2. As a result, the amounts of residual lithium compounds, such as LiOH and Li2CO3, are significantly reduced. As a consequence, the LigPO4-coated Li[Ni0.6Co0.2Mn0.2]O2 exhibits noticeable improvement in capacity retention and rate capability due to the reduction of residual LiOH and Li2CO3. Further investigation of the extensively cycled electrodes by X-ray diffraction (XRD), TEM, and ToF-SIMS demonstrated that the LiBPO4 coating layers have multi-functions: Absorption of water in the electrolyte that lowers the HF level, HF scavenging, and protection of the active materials from deleterious side reactions with the electrolyte during extensive cycling, enabling high capacity retention over 1,000 cycles.
基金the National Cancer Center Research and Development Fund,No.23-A-9.
文摘Gastric cancer(GC)remains a leading cause of cancer-related death worldwide.Less than half of GC cases are diagnosed at an advanced stage due to its lack of early symptoms.GC is a heterogeneous disease associated with a number of genetic and somatic mutations.Early detection and effective monitoring of tumor progression are essential for reducing GC disease burden and mortality.The current widespread use of semi-invasive endoscopic methods and radiologic approaches has increased the number of treatable cancers:However,these approaches are invasive,costly,and time-consuming.Thus,novel molecular noninvasive tests that detect GC alterations seem to be more sensitive and specific compared to the current methods.Recent technological advances have enabled the detection of blood-based biomarkers that could be used as diagnostic indicators and for monitoring postsurgical minimal residual disease.These biomarkers include circulating DNA,RNA,extracellular vesicles,and proteins,and their clinical applications are currently being investigated.The identification of ideal diagnostic markers for GC that have high sensitivity and specificity would improve survival rates and contribute to the advancement of precision medicine.This review provides an overview of current topics regarding the novel,recently developed diagnostic markers for GC.
基金supported by the National Natural Science Foundation of China (50876119)
文摘Numerical simulation of injection of polyethylene fluid in a variable cross-section nano-channel was carried out using the molecular dynamics method.The effects of the nano-channel cross-section and the external force on the rheological behavior and structural properties of the polyethylene fluid were investigated.It was found that an absorbed layer appeared near the wall and the thickness of the absorbed layer increased with increasing cone angle of the nano-channel.The injection distance of the polyethylene fluid decreased with increasing cone angle and decreasing external force.In the nano-channel with cone angle 45°,polyethylene particles uniformly filled the whole channel and were stretched along the flow direction.Uniaxial stretching of particles was enhanced when the external force was strengthened,which facilitates injection of the polyethylene fluid into the nano-channel.
基金JSPS-KOSEF-NSFC A3 Foresight Program(Quantifying and Predicting Terrestrial Carbon Sinks in East Asia:Toward a Network of Climate Change Research).
文摘Aims Recent studies have shown that alpine meadows on the Qinghai-Tibetan plateau act as significant CO_(2)sinks.On the plateau,alpine shrub meadow is one of typical grassland ecosystems.The major alpine shrub on the plateau is Potentilla fruticosa L.(Rosaceae),which is distributed widely from 3200 to 4000 m.Shrub species play an important role on carbon sequestration in grassland ecosystems.In addition,alpine shrubs are sensitive to climate change such as global warming.Considering global warming,the biomass and productivity of P.fruticosa will increase on Qinghai-Tibetan Plateau.Thus,understanding the carbon dynamics in alpine shrub meadow and the role of shrubs around the upper distribution limit at present is essential to predict the change in carbon sequestration on the plateau.However,the role of shrubs on the carbon dynamics in alpine shrub meadow remains unclear.The objectives of the present study were to evaluate the magnitude of CO_(2)exchange of P.fruticosa shrub patches around the upper distribution limit and to elucidate the role of P.fruticosa on ecosystem CO_(2)fluxes in an alpine meadow.Methods We used the static acrylic chamber technique to measure and estimate the net ecosystem productivity(NEP),ecosystem respiration(Re),and gross primary productivity(GPP)of P.fruticosa shrub patches at three elevations around the species’upper distribution limit.Ecosystem CO_(2)fluxes and environmental factors were measured from 17 to 20 July 2008 at 3400,3600,and 3800 m a.s.l.We examined the maximum GPP at infinite light(GPPmax)and maximum Re(Remax)during the experimental time at each elevation in relation to aboveground biomass and environmental factors,including air and soil temperature,and soil water content.Important Findings Patches of P.fruticosa around the species’upper distribution limit absorbed CO_(2),at least during the daytime.Maximum NEP at infinite light(NEPmax)and GPPmax of shrub patches in the alpine meadow varied among the three elevations,with the highest values at 3400 m and the lowest a
基金This work was supported by the National Natural Science Foundation of China(91745203)the State Key Laboratory of Pulp and Paper Engineering(2020C01)the Guangdong Pearl River Talent Program(2017GC010281).
文摘Solid oxide cells(SOCs)have attracted great attention in the past decades because of their high conversion efficiency,low environmental pollution and diversified fuel options.Nickel-based catalysts are the most widely used fuel electrode materials for SOCs due to the low price and high activity.However,when hydrocarbon fuels are employed,nickel-based electrodes face serious carbon deposition challenges,leading to a rapid decline of cell performance.Great efforts have been devoted to understanding the occurrence of the coking reaction,and to improving the stability of the electrodes in hydrocarbon fuels.In this review,we summarize recent research progress of utilizing surface modification to improve the stability and activity of Ni-based electrodes for SOCs by preventing carbon coking.The review starts with a briefly introduction about the reaction mechanism of carbon deposition,followed by listing several surface modification technologies and their working principles.Then we introduce representative works using surface modification strategies to prevent carbon coking on Ni-based electrodes.Finally,we highlight future direction of improving electrode catalytic activity and anti-coking performance through surface engineering.
基金This work was supported by the National Key R&D Program of China(2018YFB1502202)Tsinghua University Initiative Scien-tific Research Program(20193080038).
文摘Gadolinium-doped ceria(GDC)interlayers are required to prevent the interfacial reaction between La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)cathode and Y_(2)O_(3)-stabilized ZrO 2(YSZ)electrolyte in solid oxide fuel cells(SOFCs).However,it's difficult to prepare a thin and dense GDC interlayer on the sintered half-cell at a low temperature.In this study,the physical vapor deposition(PVD)method was employed to success-fully manufacture dense GDC interlayers with the thickness of 1 m m.The influences of GDC sintering temperature(900℃,1000℃ and 1100℃)on cell performance characteristics and degradation behavior were investigated.The cell with GDC interlayer sintered at 1100?C showed the lowest degradation rate during the 216-h operation.The best stability was attributed to the most effective inhibition of Sr diffusion by the GDC interlayer,which was demonstrated by the almost unchanged Ohmic and polari-zation resistances during the aging stage and the negligible Sr enrichment at YSZ/GDC interface.Compared to the conventional screen-printed GDC interlayers(sintered above 1250℃),the GDC inter-layer prepared by the PVD method and sintered at 1100℃ was significantly denser and thinner,showing a promising application prospect due to its benefits for cell stability.
基金Supported by KAKENHI(Grant-in-Aid for Scientific Research),No.18H02883.
文摘Gastrointestinal(GI)cancer remains the deadliest cancer in the world.The current standard treatment for GI cancer focuses on 5-fluorouracil-based chemotherapeutic regimens and surgery,and molecular-targeted therapy is expected to be a more effective and less toxic therapeutic strategy for GI cancer.There is wellestablished evidence for the use of epidermal growth factor receptor-targeted and vascular endothelial growth factor-targeted antibodies,which should routinely be incorporated into treatment strategies for GI cancer.Other potential therapeutic targets involve the PI3K/AKT pathway,tumor growth factor-βpathway,mesenchymal-epithelial transition pathway,WNT pathway,poly(ADP-ribose)polymerase,and immune checkpoints.Many clinical trials assessing the agents of targeted therapy are underway and have presented promising and thoughtprovoking results.With the development of molecular biology techniques,we can identify more targetable molecular alterations in larger patient populations with GI cancer.Targeting these molecules will allow us to reach the goal of precision medicine and improve the outcomes of patients with GI cancer.
基金supported by the Collaboration Program of the Laboratory for Complex Energy Processes,IAE,Kyoto Universitythe NIFS Collaborative Research Program (NIFS10KUHL030,NIFS09KUHL028,NIFS10KUHL033)
文摘A new high repetition rate Nd:YAG Thomson scattering system is developed for the Heliotron J helical device. A main purpose of installing the new system is the temporal evolution measurement of a plasma profile for improved confinement physics such as the edge transport barrier (H-mode) or the internal transport barrier of the helical plasma. The system has 25 spatial points with -10 mm resolution. Two high repetition Nd:YAG lasers (〉 550 m J@ 50 Hz) realize the measurement of the time evolution of the plasma profile with ~10 ms time intervals. Scattered light is collected by a large concave mirror (D----800 mm, f/2.25) with a solid angle of -100 mstr and transferred to interference filter polychromators by optical fiber bundles in a staircase form. The signal is amplified by newly designed fast preamplifiers with DC and AC output, which reduces the low frequency background noise. The signals are digitized with a multi-event QDC, fast gated integrators. The data acquisition is performed by a VME-based system operated by the CINOS.
基金financially supported by the Shenzhen Nanshan District Governmental Foundation(Grant No.KC2015ZDYF0021A)the Shenzhen Industry Development Foundation(Grant No.HYCYGJ20140512010015)the Shenzhen Development and Reform Commission Foundation(Grant No.2015-1033)
文摘By using a novel surface modification technique named ultrasonic-electropulsing coupling rolling (UECR) process on an Al-Si casting alloy rod, the surface of material was smoothened significantly. Meanwhile, a strengthened layer with agradient change in hardness was obtained in the outer surface, corresponding to a homogeneous gradient nano-/micro-structure. The thickness of nanometer-thick laminated structures was at least 40 μm, which was much thicker thanconventional ultrasonic rolling process. During UECR, the formation of the well-defined nanocrystalline structure wasattributed to the high strain rate and simultaneous annealing process realized by ultrasonic impact and electropulsingtreatment.
基金supported by the JSPS-CAS Core University Program in the field of "'Plasma and Nuclear Fusion"the Collaboration Program of the Laboratory for Complex Energy Processes. IAE. Kyoto University. the NIFS Collaborative flesearch Program (NIFS10KUHL030. etc.)+1 种基金the NIFS/NINS project of Formation of International Network for Scientific Collaborationsthe Grant-in-Aid for Sci.Research. MEXT
文摘Recent progress in plasma control studies on the improvement of plasma performance in Heliotron J is reviewed. The supersonic molecular beam injection (SMBI) fueling is successfully applied to Heliotron J plasma. A supersonic H2-beam is effectively injected to increase fueling efficiency and generate a peaked density profile. Local fueling with a short-pulsed SMBI can increase the core plasma density and avoid the degradation arising from edge cooling. Second harmonic electron cyclotron current drive (ECCD) experiments were conducted by launching a focused Gaussian beam with a parallel refractive index of -0.05 ≤ Nil 〈 0.6. Results show that the electron cyclotron (EC) driven current is determined not only by Nil but also by local magnetic field (B) structure where the EC power is deposited. Detailed analysis of the observed NI and B dependences is in progress with a ray-tracing simulation using the TRAVIS code. Fast ion velocity distribution was investigated using fast protons generated by ion cyclotron resonant frequency (ICRF) minority heating. For the standard configuration in Heliotron J, charge ex- change neutral particle analysis (CX-NPA) measurements show higher effective temperature of fast minority protons in the on-axis resonance case compared to that in the HFS (high field side) off-axis resonance case. However, the increase in bulk ion temperature in the HFS resonance case is larger than that in the on-axis resonance.
文摘Leiomyosarcoma of the inferior vena cava (IVC) is a rare tumor, and it needs complete surgical resection for cure. In addition, the reconstruction of IVC is necessary in many cases. Herein, we indicate the case of a 57-year-old female with leiomyosarcoma in segment I of the IVC, which grew deep into vascular lumen. She underwent complete en bloc resection of the tumor and IVC reconstruction by an artificial pericardium patch.
文摘The association between ulcerative colitis(UC) and colorectal cancer(CRC) has been acknowledged. One of the most serious and life threatening consequences of UC is the development of CRC(UC-CRC). UC-CRC patients are younger, more frequently have multiple cancerous lesions, and histologically show mucinous or signet ring cell carcinomas. The risk of CRC begins to increase 8 or 10 years after the diagnosis of UC. Risk factors for CRC with UC patients include young age at diagnosis, longer duration, greater anatomical extent of colonic involvement, the degree of inflammation, family history of CRC, and presence of primary sclerosing cholangitis. CRC on the ground of UC develop from non-dysplastic mucosa to indefinite dysplasia, lowgrade dysplasia, high-grade dysplasia and finally to invasive adenocarcinoma. Colonoscopy surveillance programs are recommended to reduce the risk of CRC and mortality in UC. Genetic alterations might play a role in the development of UC-CRC. 5-aminosalicylates might represent a favorable therapeutic option for chemoprevention of CRC.
基金Partially funded by KAKENHI(Grant-in-Aid forScientific Research),No.23390329by the National Cancer Center Research and Development Fund(23-A-9)by PriorityResearch Fund of Osaka City University
文摘The sentinel node(SN) technique has been established for the treatment of some types of solid cancers to avoid unnecessary lymphadenectomy. If node disease were diagnosed before surgery, minimal surgery with omission of lymph node dissection would be an option for patients with early gastric cancer. Although SN biopsy has been well ascertained in the treatment of breast cancer and melanoma, SN navigation surgery(SNNS) in gastric cancer has not been yet universal due to the complicated lymphatic flow from the stomach. Satisfactory establishment of SNNS will result in the possible indication of minimally invasive surgery of gastric cancer. However, the results reported in the literature on SN biopsy in gastric cancer are widely divergent and many issues are still to be resolved, such as the collection method of SN, detection of micrometastasis in SN, and clinical benefit. The difference in the procedural technique and learning phase of surgeons is also varied the accuracy of SN mapping. In this review, we outline the current status of application for SNNS in gastric cancer.
基金KAKENHI(Grant-in-Aid for Scientific Research),No.23390329the National Cancer Center Research and Development Fund(23-A-9)
文摘Recent advances in molecular targeted therapies, including targeting human epidermal growth factor receptor 2(HER2), had a major forward step in the therapy for gastric cancer patients. Application of HER2-targeted therapies, in particular trastuzumab in combination with chemotherapy in metastatic HER2-positive gastric cancers, resulted in improvements in response rates, time to progression and overall survival. Nevertheless, as with breast cancer, many patients with gastric cancer develop resistance to trastuzumab. Several promising therapies are currently being developed in combination with chemotherapy to increase the efficacy and overcome the cancerresistance. Here we review the current overview of clinical application of agents targeting HER2 in gastric cancer. We also discuss the ongoing trials supporting the use of HER2-targeted agents combined with cytotoxic agents or other monoclonal antibodies.