Biochar is the carbon-rich product obtained from the thermochemical conversion of biomass under oxygen-limited conditions.Biochar has attained extensive attention due to its agronomical and environmental benefits in a...Biochar is the carbon-rich product obtained from the thermochemical conversion of biomass under oxygen-limited conditions.Biochar has attained extensive attention due to its agronomical and environmental benefits in agro-ecosystems.This work adopts the scientometric analysis method to assess the development trends of biochar research based on the literature data retrieved from the Web of Science over the period of 1998-2018.By analysing the basic characteristics of 6934 publications,we found that the number of publications grew rapidly since 2010.Based on a keyword analysis,it is concluded that scholars have had a fundamental recognition of biochar and preliminarily found that biochar application had agronomic and environmental benefits during the period of 1998-2010.The clustering results of keywords in documents published during 2011-2015 showed that the main research hotspots were“biochar production”,“biochar and global climate change”,“soil quality and plant growth”,“organic pollutants removal”,and“heavy metals immobilization”.While in 2016-2018,beside these five main research hotspots,“biochar and composting”topic had also received greater attention,indicating that biochar utilization in organic solid waste composting is the current research hotspot.Moreover,updated reactors(e.g.,microwave reactor,fixed-bed reactor,screw-feeding reactor,bubbling fluidized bed reactor,etc.)or technologies(e.g.,solar pyrolysis,Thermo-Catalytic Reforming process,liquefaction technology,etc.)applied for efficient energy production and modified biochar for environmental remediation have been extensively studied recently.The findings may help the new researchers to seize the research frontier in the biochar field.展开更多
Humic acid (HA), a fairly stable product of decomposed organic matter that consequently accumulates in ecological systems, enhances plant growth by chelating unavailable nutrients and buffering pH. We examined the e...Humic acid (HA), a fairly stable product of decomposed organic matter that consequently accumulates in ecological systems, enhances plant growth by chelating unavailable nutrients and buffering pH. We examined the effect of HA derived from lignite on growth and macronutrient uptake of wheat (Triticum acstivum L.) grown in earthen pots under greenhouse conditions. The soils used in the pot experiment were a calcareous Haplustalf and a non-calcareous Haplustalf collected from Raisalpur and Guliana, respectively, in Punjab Province, Pakistan. The experiment consisted of four treatments with HA levels of 0 (control without HA), 30, 60, and 90 mg kg^-1 soil designated as HA0, HA1, HA2, and HA3, respectively. In the treatment without HA (HA0), nitrogen (N), phosphorus (P), and potassium (K) were applied at 200, 100, and 125 mg kg^-1 soil, respectively. Significant differences among HA levels were recorded for wheat growth (plant height and shoot weight) and N uptake. On an average of both soils, the largest increases in plant height and shoot fresh and dry weights were found with HA2 (60 mg kg^-1 soil), being 10%, 25%, and 18%, respectively, as compared to the control without HA (HA0). Both soils responded positively towards HA application. The wheat growth and N uptake in the non-calcareous soil were higher than those of the calcareous soil. The HA application significantly improved K concentration of the non-calcareous soil and P and NO3-N of the calcareous soil. The highest rate of HA (90 mg kg^-1 soil) had a negative effect on growth and nutrient uptake of wheat as well as nutrient accumulation in soil, whereas the medium dose of HA (60 mg kg^-1 soil) was more efficient in promoting wheat growth.展开更多
Shaheen Basma ti was evolved as a salt tolerant fine rice va riety by the Soil Salinity Research Institute,Pindi Bhattian, Pakistan. Water culture studies were conducted to investigate the physiological mechanismexerc...Shaheen Basma ti was evolved as a salt tolerant fine rice va riety by the Soil Salinity Research Institute,Pindi Bhattian, Pakistan. Water culture studies were conducted to investigate the physiological mechanismexercised by this variety in particular and rice plant in general to face the saline environment. Performanceof this rice variety and the concentration and uptake of ions were studied under stress of three salinity levels(30, 60 and 90 mmol L-1) created with NaCl. Recorded data indicated that shoot dry matter was notsignificantly affected by all the three levels of salinity. However, NaCl levels of 60 and 90 mmol L-1 affectedthe root dry matter significantly. Sodium concentration and uptake was enhanced significantly in root andshoot at the first level of salinity (30 mmol L-1) but thereafter the differences were non-significant, indicatingthe preferential absorption of this cation. The K concentration decreased significantly in shoots at all thelevels. The impact was less pronounced in roots as far as K absorption was concerned. The effect on Ca andMg concentrations was not significant. The values of K:Na, Ca:Na and (Ca+Mg):Na ratios in shoot and rootwere comparatively low under stress conditions, indicating that selective ion absorption may be the principalsalt tolerance mechanism of variety Shaheen Basmati when grown in a saline medium.展开更多
The recent pandemic of coronavirus disease 2019(COVID-19)caused by SARS-CoV-2 has raised global health concerns.The viral 3-chymotrypsin-like cysteine protease(3CL^pro)enzyme controls coronavirus replication and is es...The recent pandemic of coronavirus disease 2019(COVID-19)caused by SARS-CoV-2 has raised global health concerns.The viral 3-chymotrypsin-like cysteine protease(3CL^pro)enzyme controls coronavirus replication and is essential for its life cycle.3CL^pro is a proven drug discovery target in the case of severe acute respiratory syndrome coronavirus(SARS-CoV)and Middle East respiratory syndrome coronavirus(MERS-CoV).Recent studies revealed that the genome sequence of SARS-CoV-2 is very similar to that of SARS-CoV.Therefore,herein,we analysed the 3CL^pro sequence,constructed its 3D homology model,and screened it against a medicinal plant library containing 32,297 potential anti-viral phytochemicals/traditional Chinese medicinal compounds.Our analyses revealed that the top nine hits might serve as potential anti-SARS-CoV-2 lead molecules for further optimisation and drug development process to combat COVID-19.展开更多
BACKGROUND Mixed neuroendocrine non-neuroendocrine neoplasm(MiNEN)is a rare diagnosis,mainly encountered in the gastro-entero-pancreatic tract.There is limited knowledge of its epidemiology,prognosis and biology,and t...BACKGROUND Mixed neuroendocrine non-neuroendocrine neoplasm(MiNEN)is a rare diagnosis,mainly encountered in the gastro-entero-pancreatic tract.There is limited knowledge of its epidemiology,prognosis and biology,and the best management for affected patients is still to be defined.AIM To investigate clinical-pathological characteristics,treatment modalities and survival outcomes of a retrospective cohort of patients with a diagnosis of MiNEN.METHODS Consecutive patients with a histologically proven diagnosis of MiNEN were identified at 5 European centres.Patient data were retrospectively collected from medical records.Pathological samples were reviewed to ascertain compliance with the 2017 World Health Organisation definition of MiNEN.Tumour responses to systemic treatment were assessed according to the Response Evaluation Criteria in Solid Tumours 1.1.Kaplan-Meier analysis was applied to estimate survival outcomes.Associations between clinical-pathological characteristics and survival outcomes were explored using Log-rank test for equality of survivors functions(univariate)and Cox-regression analysis(multivariable).RESULTS Sixty-nine consecutive patients identified;Median age at diagnosis:64 years.Males:63.8%.Localised disease(curable):53.6%.Commonest sites of origin:colon-rectum(43.5%)and oesophagus/oesophagogastric junction(15.9%).The neuroendocrine component was;predominant in 58.6%,poorly differentiated in 86.3%,and large cell in 81.25%,of cases analysed.Most distant metastases analysed(73.4%)were occupied only by a poorly differentiated neuroendocrine component.Ninety-four percent of patients with localised disease underwent curative surgery;53%also received perioperative treatment,most often in line with protocols for adenocarcinomas from the same sites of origin.Chemotherapy was offered to most patients(68.1%)with advanced disease,and followed protocols for pure neuroendocrine carcinomas or adenocarcinomas in equal proportion.In localised cases,median recurrence free survival(RFS);14.0 months(95%CI:9.2-24.展开更多
Biochar as a soil amendment is confronted with the challenge that it must benefit soil health as it can be by no means separated from soils once it is added. The available literature even though sparse and mostly base...Biochar as a soil amendment is confronted with the challenge that it must benefit soil health as it can be by no means separated from soils once it is added. The available literature even though sparse and mostly based on short-term studies has been encouraging and the trend obtained so far has raised many hopes. Biochar has been reported to positively impact an array of soil processes ranging from benefiting soil biology, controlling soil-borne pathogens, enhancing nitrogen fixation, improving soil physical and chemical properties,decreasing nitrate(NO-3) leaching and nitrous oxide(N2O) emission to remediation of contaminated soils. However, very little biochar is still utilized as soil amendment mainly because these benefits are yet to be quantified, and also the mechanisms by which the soil health is improved are poorly understood. Due to the infancy of research regarding this subject, there are still more questions than answers. The future research efforts must focus on carrying out long-term experiments and uncover the mechanisms underlying these processes so that key concerns surrounding the use of biochar are addressed before its large scale application is recommended.展开更多
The excellent corrosion resistance,formability and strength make stainless steels versatile for diverse applications.However,its high specific strength and good crashworthiness make it suitable for transportation and ...The excellent corrosion resistance,formability and strength make stainless steels versatile for diverse applications.However,its high specific strength and good crashworthiness make it suitable for transportation and aerospace industry.On the other hand,the need to reduce the weight of vehicle and aerospace components has created renewed interest in the use of magnesium alloys.Due to their differences in physical and metallurgical properties,bonding of the 316L steel and AZ31 magnesium alloy using conventional fusion welding methods encountered many limitations.Therefore,the use of liquid phase forming interlayers is required to overcome the differences in their properties,eliminates the need for a high bonding pressure to achieve intimate contact between the bonded surfaces.Both Cu and Ni interlayers successively formed a eutectic phase with magnesium.The formation of intermetallics and Mg diffusion caused the eutectic phase to isothermally solidify with increasing bonding time.The formation of ternary intermetallic phases(λ1 and B2) impaired the bond shear strength particularly at the end of the isothermal solidification stage where no eutectic phase was observed.However,the joints showed a higher shear strength value of 57 MPa when bonding with Cu interlayer at 530℃ for 30 min compared to 32 MPa when Ni interlayer was used at 510℃ for 20 min.展开更多
Hepatocellular carcinoma(HCC) is now the second leading cause of cancer-related deaths globally and many patients have incurable disease. HCC predominantly occurs in the setting of liver cirrhosis and is a paradigm fo...Hepatocellular carcinoma(HCC) is now the second leading cause of cancer-related deaths globally and many patients have incurable disease. HCC predominantly occurs in the setting of liver cirrhosis and is a paradigm for inflammation-induced cancer. The causes of chronic liver disease promote the development of transformed or premalignant hepatocytes and predisposes to the development of HCC. For HCC to grow and progress it is now clear that it requires an immunosuppressive niche within the fibrogenic microenvironment of cirrhosis. The rationale for targeting this immunosuppression is supported by responses seen in recent trials with checkpoint inhibitors. With the impact of immunotherapy, HCC progression may be delayed and long term durable responses may be seen. This makes the management of the underlying liver cirrhosis in HCC even more crucial as studies demonstrate that measures of liver function are a major prognostic factor in HCC. In this review, we discuss the development of cancer in the setting of liver inflammation and fibrosis, reviewing the microenvironment that leads to this tumourigenic climate and the implications this has for patient management.展开更多
OBJECTIVE Previous studies have demonstrated a close association between an altered immune system and major depressive disorders,and inhibition of neuroinflammation may represent an alternative mechanism to treat depr...OBJECTIVE Previous studies have demonstrated a close association between an altered immune system and major depressive disorders,and inhibition of neuroinflammation may represent an alternative mechanism to treat depression.Recently,the anti-inflammatory activ⁃ity of ibrutinib has been reported.However,the effect of ibrutinib on neuroinflammation-induced depression and its underlying mechanism has not been comprehensively studied.Therefore,we aimed to elucidate the potential anti-depres⁃sive role and mechanism of ibrutinib against neu⁃roinflammation-induced depression and synaptic defects.METHODS AND RESULTS Ibrutinib treatment significantly reduced lipopolysaccha⁃ride(LPS)-induced depressive-like behaviors and neuroinflammation via inhibiting NF-κB acti⁃vation,decreasing proinflammatory cytokine levels,and normalizing redox signaling and its downstream components,including Nrf2,HO-1,and SOD2,as well as glial cell activation mark⁃ers,such as Iba-1 and GFAP.Further,ibrutinib treatment inhibited LPS-activated inflammasome activation by targeting NLRP3/P38/caspase-1 signaling.Interestingly,LPS reduced the number of dendritic spines and expression of BDNF,and synaptic-related markers,including PSD95,snap25,and synaptophysin,were improved by ibrutinib treatment in the hippocampal area of the mouse brain.CONCLUSION Ibrutinib can allevi⁃ate neuroinflammation and synaptic defects,sug⁃gesting it has antidepressant potential against LPS-induced neuroinflammation and depression.展开更多
We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for cont...We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for continuous data.The catalog contains 29,519 well-located events in the two mainshocks rupture region during 2023-02-01–2023-02-28,which significantly improves the detection completeness and relocation precision compared to the public routine catalog.Employing the new PALM catalog,we analyze the structure of the seismogenic fault system.We find that the Eastern Anatolian Fault(EAF)that generated the first M_(W)7.9 mainshock is overall near-vertical,whereas complexities are revealed in a small-scale,such as subparallel subfaults,unmapped branches,and stepovers.The seismicity on EAF is shallow(<15 km)and concentrated in depth distribution,indicating a clear lock-creep transition.In contrast,the SürgüFault(SF)that is responsible for the second M_(W)7.8 mainshock is shovel-shaped for the nucleation segment and has overall low dip angles(~40°–80°).Aftershocks on the SF distribute in a broad range of depth,extending down to~35 km.We also analyze the temporal behavior of seismicity,discovering no immediate foreshocks within~5 days preceding the first mainshock,and no seismic activity on the SF before the second mainshock.展开更多
Multiwave seismic technology promotes the application of joint PP–PS amplitude versus offset (AVO) inversion;however conventional joint PP–PS AVO inversioan is linear based on approximations of the Zoeppritz equatio...Multiwave seismic technology promotes the application of joint PP–PS amplitude versus offset (AVO) inversion;however conventional joint PP–PS AVO inversioan is linear based on approximations of the Zoeppritz equations for multiple iterations. Therefore the inversion results of P-wave, S-wave velocity and density exhibit low precision in the faroffset;thus, the joint PP–PS AVO inversion is nonlinear. Herein, we propose a nonlinear joint inversion method based on exact Zoeppritz equations that combines improved Bayesian inference and a least squares support vector machine (LSSVM) to solve the nonlinear inversion problem. The initial parameters of Bayesian inference are optimized via particle swarm optimization (PSO). In improved Bayesian inference, the optimal parameter of the LSSVM is obtained by maximizing the posterior probability of the hyperparameters, thus improving the learning and generalization abilities of LSSVM. Then, an optimal nonlinear LSSVM model that defi nes the relationship between seismic refl ection amplitude and elastic parameters is established to improve the precision of the joint PP–PS AVO inversion. Further, the nonlinear problem of joint inversion can be solved through a single training of the nonlinear inversion model. The results of the synthetic data suggest that the precision of the estimated parameters is higher than that obtained via Bayesian linear inversion with PP-wave data and via approximations of the Zoeppritz equations. In addition, results using synthetic data with added noise show that the proposed method has superior anti-noising properties. Real-world application shows the feasibility and superiority of the proposed method, as compared with Bayesian linear inversion.展开更多
Tuberculosis (TB) is a serious infectious disease and its control is considered a challenge, particularly among vulnerable populations such as prisoners. The prevalence of TB in prisons is an alarming public health pr...Tuberculosis (TB) is a serious infectious disease and its control is considered a challenge, particularly among vulnerable populations such as prisoners. The prevalence of TB in prisons is an alarming public health problem in many countries. The aim of this study is to describe the epidemiology of tuberculosis and the strategies for controlling this disease in the Chadian prison population. During the course of our study, the prevalence of tuberculosis in prisons was 9.64%. The age group between 55 years and over (43.33%) was the most represented in this study, and all patients were men with a frequency of 62.66%. The cross-tabulation of Culture_7H9G and Culture_7H9P showed that out of our total positive sample, we found a total of 87 positive strains and 63 negative strains. Our study shows that it is essential to know the prevalence of tuberculosis in all the country’s prisons. Indeed, this can serve as an indication of the need for action in prisons to reduce TB rates, in particular by improving the structure of prison environments, diagnosing new cases quickly and accurately, identifying drug-resistant strains and implementing effective, direct treatment observed in people with tuberculosis.展开更多
基金support by the National Natural Science Foundation of China(21537002,41422105,41671478)the Natural Science Foundation of Jiangsu Province,China(Project No.BK20130050).
文摘Biochar is the carbon-rich product obtained from the thermochemical conversion of biomass under oxygen-limited conditions.Biochar has attained extensive attention due to its agronomical and environmental benefits in agro-ecosystems.This work adopts the scientometric analysis method to assess the development trends of biochar research based on the literature data retrieved from the Web of Science over the period of 1998-2018.By analysing the basic characteristics of 6934 publications,we found that the number of publications grew rapidly since 2010.Based on a keyword analysis,it is concluded that scholars have had a fundamental recognition of biochar and preliminarily found that biochar application had agronomic and environmental benefits during the period of 1998-2010.The clustering results of keywords in documents published during 2011-2015 showed that the main research hotspots were“biochar production”,“biochar and global climate change”,“soil quality and plant growth”,“organic pollutants removal”,and“heavy metals immobilization”.While in 2016-2018,beside these five main research hotspots,“biochar and composting”topic had also received greater attention,indicating that biochar utilization in organic solid waste composting is the current research hotspot.Moreover,updated reactors(e.g.,microwave reactor,fixed-bed reactor,screw-feeding reactor,bubbling fluidized bed reactor,etc.)or technologies(e.g.,solar pyrolysis,Thermo-Catalytic Reforming process,liquefaction technology,etc.)applied for efficient energy production and modified biochar for environmental remediation have been extensively studied recently.The findings may help the new researchers to seize the research frontier in the biochar field.
基金Supported by the University of Azad Jammu and Kashmir,Muzaffarabad,Pakistan
文摘Humic acid (HA), a fairly stable product of decomposed organic matter that consequently accumulates in ecological systems, enhances plant growth by chelating unavailable nutrients and buffering pH. We examined the effect of HA derived from lignite on growth and macronutrient uptake of wheat (Triticum acstivum L.) grown in earthen pots under greenhouse conditions. The soils used in the pot experiment were a calcareous Haplustalf and a non-calcareous Haplustalf collected from Raisalpur and Guliana, respectively, in Punjab Province, Pakistan. The experiment consisted of four treatments with HA levels of 0 (control without HA), 30, 60, and 90 mg kg^-1 soil designated as HA0, HA1, HA2, and HA3, respectively. In the treatment without HA (HA0), nitrogen (N), phosphorus (P), and potassium (K) were applied at 200, 100, and 125 mg kg^-1 soil, respectively. Significant differences among HA levels were recorded for wheat growth (plant height and shoot weight) and N uptake. On an average of both soils, the largest increases in plant height and shoot fresh and dry weights were found with HA2 (60 mg kg^-1 soil), being 10%, 25%, and 18%, respectively, as compared to the control without HA (HA0). Both soils responded positively towards HA application. The wheat growth and N uptake in the non-calcareous soil were higher than those of the calcareous soil. The HA application significantly improved K concentration of the non-calcareous soil and P and NO3-N of the calcareous soil. The highest rate of HA (90 mg kg^-1 soil) had a negative effect on growth and nutrient uptake of wheat as well as nutrient accumulation in soil, whereas the medium dose of HA (60 mg kg^-1 soil) was more efficient in promoting wheat growth.
文摘Shaheen Basma ti was evolved as a salt tolerant fine rice va riety by the Soil Salinity Research Institute,Pindi Bhattian, Pakistan. Water culture studies were conducted to investigate the physiological mechanismexercised by this variety in particular and rice plant in general to face the saline environment. Performanceof this rice variety and the concentration and uptake of ions were studied under stress of three salinity levels(30, 60 and 90 mmol L-1) created with NaCl. Recorded data indicated that shoot dry matter was notsignificantly affected by all the three levels of salinity. However, NaCl levels of 60 and 90 mmol L-1 affectedthe root dry matter significantly. Sodium concentration and uptake was enhanced significantly in root andshoot at the first level of salinity (30 mmol L-1) but thereafter the differences were non-significant, indicatingthe preferential absorption of this cation. The K concentration decreased significantly in shoots at all thelevels. The impact was less pronounced in roots as far as K absorption was concerned. The effect on Ca andMg concentrations was not significant. The values of K:Na, Ca:Na and (Ca+Mg):Na ratios in shoot and rootwere comparatively low under stress conditions, indicating that selective ion absorption may be the principalsalt tolerance mechanism of variety Shaheen Basmati when grown in a saline medium.
基金This work was supported by the National Key Research and Development Program of China(2020YFC0845600)the Hubei Provincial Natural Science Foundation of China(2019CFA014)+1 种基金the Starting Research Grant for High-level Talents from Guangxi University,Nanning,ChinaPostdoctoral Research Platform Grant of Guangxi University,Nanning,China.
文摘The recent pandemic of coronavirus disease 2019(COVID-19)caused by SARS-CoV-2 has raised global health concerns.The viral 3-chymotrypsin-like cysteine protease(3CL^pro)enzyme controls coronavirus replication and is essential for its life cycle.3CL^pro is a proven drug discovery target in the case of severe acute respiratory syndrome coronavirus(SARS-CoV)and Middle East respiratory syndrome coronavirus(MERS-CoV).Recent studies revealed that the genome sequence of SARS-CoV-2 is very similar to that of SARS-CoV.Therefore,herein,we analysed the 3CL^pro sequence,constructed its 3D homology model,and screened it against a medicinal plant library containing 32,297 potential anti-viral phytochemicals/traditional Chinese medicinal compounds.Our analyses revealed that the top nine hits might serve as potential anti-SARS-CoV-2 lead molecules for further optimisation and drug development process to combat COVID-19.
文摘BACKGROUND Mixed neuroendocrine non-neuroendocrine neoplasm(MiNEN)is a rare diagnosis,mainly encountered in the gastro-entero-pancreatic tract.There is limited knowledge of its epidemiology,prognosis and biology,and the best management for affected patients is still to be defined.AIM To investigate clinical-pathological characteristics,treatment modalities and survival outcomes of a retrospective cohort of patients with a diagnosis of MiNEN.METHODS Consecutive patients with a histologically proven diagnosis of MiNEN were identified at 5 European centres.Patient data were retrospectively collected from medical records.Pathological samples were reviewed to ascertain compliance with the 2017 World Health Organisation definition of MiNEN.Tumour responses to systemic treatment were assessed according to the Response Evaluation Criteria in Solid Tumours 1.1.Kaplan-Meier analysis was applied to estimate survival outcomes.Associations between clinical-pathological characteristics and survival outcomes were explored using Log-rank test for equality of survivors functions(univariate)and Cox-regression analysis(multivariable).RESULTS Sixty-nine consecutive patients identified;Median age at diagnosis:64 years.Males:63.8%.Localised disease(curable):53.6%.Commonest sites of origin:colon-rectum(43.5%)and oesophagus/oesophagogastric junction(15.9%).The neuroendocrine component was;predominant in 58.6%,poorly differentiated in 86.3%,and large cell in 81.25%,of cases analysed.Most distant metastases analysed(73.4%)were occupied only by a poorly differentiated neuroendocrine component.Ninety-four percent of patients with localised disease underwent curative surgery;53%also received perioperative treatment,most often in line with protocols for adenocarcinomas from the same sites of origin.Chemotherapy was offered to most patients(68.1%)with advanced disease,and followed protocols for pure neuroendocrine carcinomas or adenocarcinomas in equal proportion.In localised cases,median recurrence free survival(RFS);14.0 months(95%CI:9.2-24.
文摘Biochar as a soil amendment is confronted with the challenge that it must benefit soil health as it can be by no means separated from soils once it is added. The available literature even though sparse and mostly based on short-term studies has been encouraging and the trend obtained so far has raised many hopes. Biochar has been reported to positively impact an array of soil processes ranging from benefiting soil biology, controlling soil-borne pathogens, enhancing nitrogen fixation, improving soil physical and chemical properties,decreasing nitrate(NO-3) leaching and nitrous oxide(N2O) emission to remediation of contaminated soils. However, very little biochar is still utilized as soil amendment mainly because these benefits are yet to be quantified, and also the mechanisms by which the soil health is improved are poorly understood. Due to the infancy of research regarding this subject, there are still more questions than answers. The future research efforts must focus on carrying out long-term experiments and uncover the mechanisms underlying these processes so that key concerns surrounding the use of biochar are addressed before its large scale application is recommended.
基金the EMOD,EAA and MTC Egypt for sponsoring this work
文摘The excellent corrosion resistance,formability and strength make stainless steels versatile for diverse applications.However,its high specific strength and good crashworthiness make it suitable for transportation and aerospace industry.On the other hand,the need to reduce the weight of vehicle and aerospace components has created renewed interest in the use of magnesium alloys.Due to their differences in physical and metallurgical properties,bonding of the 316L steel and AZ31 magnesium alloy using conventional fusion welding methods encountered many limitations.Therefore,the use of liquid phase forming interlayers is required to overcome the differences in their properties,eliminates the need for a high bonding pressure to achieve intimate contact between the bonded surfaces.Both Cu and Ni interlayers successively formed a eutectic phase with magnesium.The formation of intermetallics and Mg diffusion caused the eutectic phase to isothermally solidify with increasing bonding time.The formation of ternary intermetallic phases(λ1 and B2) impaired the bond shear strength particularly at the end of the isothermal solidification stage where no eutectic phase was observed.However,the joints showed a higher shear strength value of 57 MPa when bonding with Cu interlayer at 530℃ for 30 min compared to 32 MPa when Ni interlayer was used at 510℃ for 20 min.
文摘Hepatocellular carcinoma(HCC) is now the second leading cause of cancer-related deaths globally and many patients have incurable disease. HCC predominantly occurs in the setting of liver cirrhosis and is a paradigm for inflammation-induced cancer. The causes of chronic liver disease promote the development of transformed or premalignant hepatocytes and predisposes to the development of HCC. For HCC to grow and progress it is now clear that it requires an immunosuppressive niche within the fibrogenic microenvironment of cirrhosis. The rationale for targeting this immunosuppression is supported by responses seen in recent trials with checkpoint inhibitors. With the impact of immunotherapy, HCC progression may be delayed and long term durable responses may be seen. This makes the management of the underlying liver cirrhosis in HCC even more crucial as studies demonstrate that measures of liver function are a major prognostic factor in HCC. In this review, we discuss the development of cancer in the setting of liver inflammation and fibrosis, reviewing the microenvironment that leads to this tumourigenic climate and the implications this has for patient management.
文摘OBJECTIVE Previous studies have demonstrated a close association between an altered immune system and major depressive disorders,and inhibition of neuroinflammation may represent an alternative mechanism to treat depression.Recently,the anti-inflammatory activ⁃ity of ibrutinib has been reported.However,the effect of ibrutinib on neuroinflammation-induced depression and its underlying mechanism has not been comprehensively studied.Therefore,we aimed to elucidate the potential anti-depres⁃sive role and mechanism of ibrutinib against neu⁃roinflammation-induced depression and synaptic defects.METHODS AND RESULTS Ibrutinib treatment significantly reduced lipopolysaccha⁃ride(LPS)-induced depressive-like behaviors and neuroinflammation via inhibiting NF-κB acti⁃vation,decreasing proinflammatory cytokine levels,and normalizing redox signaling and its downstream components,including Nrf2,HO-1,and SOD2,as well as glial cell activation mark⁃ers,such as Iba-1 and GFAP.Further,ibrutinib treatment inhibited LPS-activated inflammasome activation by targeting NLRP3/P38/caspase-1 signaling.Interestingly,LPS reduced the number of dendritic spines and expression of BDNF,and synaptic-related markers,including PSD95,snap25,and synaptophysin,were improved by ibrutinib treatment in the hippocampal area of the mouse brain.CONCLUSION Ibrutinib can allevi⁃ate neuroinflammation and synaptic defects,sug⁃gesting it has antidepressant potential against LPS-induced neuroinflammation and depression.
基金jointly supported by the National Key R&D Program (No.2022YFF0800601)the Istanbul Technical University Research Fund (ITU-BAP)+1 种基金the Alexander von Humboldt Foundation Research Fellowship Award for providing computing facilities through the Humboldt-Stiftung Follow-Up Programthe University of California,Riverside。
文摘We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for continuous data.The catalog contains 29,519 well-located events in the two mainshocks rupture region during 2023-02-01–2023-02-28,which significantly improves the detection completeness and relocation precision compared to the public routine catalog.Employing the new PALM catalog,we analyze the structure of the seismogenic fault system.We find that the Eastern Anatolian Fault(EAF)that generated the first M_(W)7.9 mainshock is overall near-vertical,whereas complexities are revealed in a small-scale,such as subparallel subfaults,unmapped branches,and stepovers.The seismicity on EAF is shallow(<15 km)and concentrated in depth distribution,indicating a clear lock-creep transition.In contrast,the SürgüFault(SF)that is responsible for the second M_(W)7.8 mainshock is shovel-shaped for the nucleation segment and has overall low dip angles(~40°–80°).Aftershocks on the SF distribute in a broad range of depth,extending down to~35 km.We also analyze the temporal behavior of seismicity,discovering no immediate foreshocks within~5 days preceding the first mainshock,and no seismic activity on the SF before the second mainshock.
基金supported by the Fundamental Research Funds for the Central Universities of China(No.2652017438)the National Science and Technology Major Project of China(No.2016ZX05003-003)
文摘Multiwave seismic technology promotes the application of joint PP–PS amplitude versus offset (AVO) inversion;however conventional joint PP–PS AVO inversioan is linear based on approximations of the Zoeppritz equations for multiple iterations. Therefore the inversion results of P-wave, S-wave velocity and density exhibit low precision in the faroffset;thus, the joint PP–PS AVO inversion is nonlinear. Herein, we propose a nonlinear joint inversion method based on exact Zoeppritz equations that combines improved Bayesian inference and a least squares support vector machine (LSSVM) to solve the nonlinear inversion problem. The initial parameters of Bayesian inference are optimized via particle swarm optimization (PSO). In improved Bayesian inference, the optimal parameter of the LSSVM is obtained by maximizing the posterior probability of the hyperparameters, thus improving the learning and generalization abilities of LSSVM. Then, an optimal nonlinear LSSVM model that defi nes the relationship between seismic refl ection amplitude and elastic parameters is established to improve the precision of the joint PP–PS AVO inversion. Further, the nonlinear problem of joint inversion can be solved through a single training of the nonlinear inversion model. The results of the synthetic data suggest that the precision of the estimated parameters is higher than that obtained via Bayesian linear inversion with PP-wave data and via approximations of the Zoeppritz equations. In addition, results using synthetic data with added noise show that the proposed method has superior anti-noising properties. Real-world application shows the feasibility and superiority of the proposed method, as compared with Bayesian linear inversion.
文摘Tuberculosis (TB) is a serious infectious disease and its control is considered a challenge, particularly among vulnerable populations such as prisoners. The prevalence of TB in prisons is an alarming public health problem in many countries. The aim of this study is to describe the epidemiology of tuberculosis and the strategies for controlling this disease in the Chadian prison population. During the course of our study, the prevalence of tuberculosis in prisons was 9.64%. The age group between 55 years and over (43.33%) was the most represented in this study, and all patients were men with a frequency of 62.66%. The cross-tabulation of Culture_7H9G and Culture_7H9P showed that out of our total positive sample, we found a total of 87 positive strains and 63 negative strains. Our study shows that it is essential to know the prevalence of tuberculosis in all the country’s prisons. Indeed, this can serve as an indication of the need for action in prisons to reduce TB rates, in particular by improving the structure of prison environments, diagnosing new cases quickly and accurately, identifying drug-resistant strains and implementing effective, direct treatment observed in people with tuberculosis.