The reactive force-field(ReaxFF)interatomic potential is a powerful computational tool for exploring,developing and optimizing material properties.Methods based on the principles of quantum mechanics(QM),while offerin...The reactive force-field(ReaxFF)interatomic potential is a powerful computational tool for exploring,developing and optimizing material properties.Methods based on the principles of quantum mechanics(QM),while offering valuable theoretical guidance at the electronic level,are often too computationally intense for simulations that consider the full dynamic evolution of a system.Alternatively,empirical interatomic potentials that are based on classical principles require significantly fewer computational resources,which enables simulations to better describe dynamic processes over longer timeframes and on larger scales.Such methods,however,typically require a predefined connectivity between atoms,precluding simulations that involve reactive events.The ReaxFF method was developed to help bridge this gap.Approaching the gap from the classical side,ReaxFF casts the empirical interatomic potential within a bond-order formalism,thus implicitly describing chemical bonding without expensive QM calculations.This article provides an overview of the development,application,and future directions of the ReaxFF method.展开更多
Caffeine is the most commonly used medication for treatment of apnea of prematurity. Its effect has been well established in reducing the frequency of apnea, intermittent hypoxemia, and extubation failure in mechanica...Caffeine is the most commonly used medication for treatment of apnea of prematurity. Its effect has been well established in reducing the frequency of apnea, intermittent hypoxemia, and extubation failure in mechanically ventilated preterm infants. Evidence for additional short-term benefits on reducing the incidence of bronchopulmonary dysplasia and patent ductus arteriosus has also been suggested. Controversies existamong various neonatal intensive care units in terms of drug efficacy compared to other methylxanthines, dosage regimen, time of initiation, duration of therapy, drug safety and value of therapeutic drug monitoring. In the current review, we will summarize the available evidence for the best practice in using caffeine therapy in preterm infants.展开更多
In recent years,there have been increasingly rapid advances of using bioactive materials in tissue engineering applications.Bioactive materials constitute many different structures based upon ceramic,metallic or polym...In recent years,there have been increasingly rapid advances of using bioactive materials in tissue engineering applications.Bioactive materials constitute many different structures based upon ceramic,metallic or polymeric materials,and can elicit specific tissue responses.However,most of them are relatively brittle,stiff,and difficult to form into complex shapes.Hence,there has been a growing demand for preparing materials with tailored physical,biological,and mechanical properties,as well as predictable degradation behavior.Chitosan-based materials have been shown to be ideal bioactive materials due to their outstanding properties such as formability into different structures,and fabricability with a wide range of bioactive materials,in addition to their biocompatibility and biodegradability.This review highlights scientific findings concerning the use of innovative chitosan-based bioactive materials in the fields of tissue engineering,with an outlook into their future applications.It also covers latest developments in terms of constituents,fabrication technologies,structural,and bioactive properties of these materials that may represent an effective solution for tissue engineering materials,making them a realistic clinical alternative in the near future.展开更多
Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even...Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary toxicity.展开更多
An intrusion detection system collects and analyzes information from different areas within a computer or a network to identify possible security threats that include threats from both outside as well as inside of the...An intrusion detection system collects and analyzes information from different areas within a computer or a network to identify possible security threats that include threats from both outside as well as inside of the organization. It deals with large amount of data, which contains various ir-relevant and redundant features and results in increased processing time and low detection rate. Therefore, feature selection should be treated as an indispensable pre-processing step to improve the overall system performance significantly while mining on huge datasets. In this context, in this paper, we focus on a two-step approach of feature selection based on Random Forest. The first step selects the features with higher variable importance score and guides the initialization of search process for the second step whose outputs the final feature subset for classification and in-terpretation. The effectiveness of this algorithm is demonstrated on KDD’99 intrusion detection datasets, which are based on DARPA 98 dataset, provides labeled data for researchers working in the field of intrusion detection. The important deficiency in the KDD’99 data set is the huge number of redundant records as observed earlier. Therefore, we have derived a data set RRE-KDD by eliminating redundant record from KDD’99 train and test dataset, so the classifiers and feature selection method will not be biased towards more frequent records. This RRE-KDD consists of both KDD99Train+ and KDD99Test+ dataset for training and testing purposes, respectively. The experimental results show that the Random Forest based proposed approach can select most im-portant and relevant features useful for classification, which, in turn, reduces not only the number of input features and time but also increases the classification accuracy.展开更多
Puccinia striiformis f.sp.tritici(Pst),a biotrophic plant pathogen,secretes numerous effectors to modulate host defense systems.Understanding the molecular mechanisms by which Pst effectors regulate wheat immunity is ...Puccinia striiformis f.sp.tritici(Pst),a biotrophic plant pathogen,secretes numerous effectors to modulate host defense systems.Understanding the molecular mechanisms by which Pst effectors regulate wheat immunity is of great importance for the development of novel strategies for durable control of stripe rust.In this study,we identified a glycine-serine-rich effector gene,PstGSRE1,which is highly induced dur-ing early infection.Transgenic expression of PstGSRE1 RNAi constructs in wheat significantly reduced virulence of Pst and increased H2O2 accumulation in wheat.PstGSRE1 was shown to target the reactive ox-ygen species(ROS)-associated transcription factor TaLOL2,a positive regulator of wheat immunity.PstGSRE1 disrupted nuclear localization of TaLOL2 and suppressed ROS-mediated cell death induced by TaLOL2,thus compromising host immunity.This work reveals a previously unrecognized strategy whereby rust fungi exploit the PstGSRE1 effector to defeat ROS-associated plant defense by modulating the subcellular compartment of a host immune regulator and facilitate pathogen infection.展开更多
Background Development of myopia among young children is often contributed to the refractive status of the parents. This study was conducted to determine whether myopia can be inherited across the generation among a s...Background Development of myopia among young children is often contributed to the refractive status of the parents. This study was conducted to determine whether myopia can be inherited across the generation among a sample in the Klang Valley. Three generations involved are: G1 (grandparents), G2 (parents) and G3 (children). Methods Sixty-two families were screened and forty families were selected to participate in this study. The inclusion criterion is having at least one myopic member in any of the three generations. Subjects (G2) were first asked to fill up a questionnaire form before their refractive status was determined by clinical examination that provided acuity of 6/6 or better. Refractive status of G1 was determined using information from the questionnaire while for G2 and G3 through clinical examination. Results Generally, the prevalence of myopia is seen to increase throughout the generations from G1 being the lowest (25.6%) to G3 being the highest (41.1%). Strong genetic influence can be found between G1 and G2 as majority of myopes in G2 is when both parents were myopic. However, although the prevalence of myopia increased from G2 to G3, there was no strong genetical influence. Majority of subjects in G3 were non-myopes when both their parents were myopic. Conclusion Parental historv accounts for a limited DrODOrtion of variance in mvoeia development.展开更多
The brown planthopper(BPH),Nilaparvata lugens(St?l),appeared as a devastating pest of rice in Asia. Experiments were conducted to study the effects of three nutrients,nitrogen(N),phosphorus(P) and potassium(K),on BPH ...The brown planthopper(BPH),Nilaparvata lugens(St?l),appeared as a devastating pest of rice in Asia. Experiments were conducted to study the effects of three nutrients,nitrogen(N),phosphorus(P) and potassium(K),on BPH and its host rice plants. Biochemical constituents of BPH and rice plants with varying nutrient levels at different growth stages,and changes in relative water content(RWC) of rice plants were determined in the laboratory. Feeding of BPH and the tolerance of rice plants to BPH with different nutrient levels were determined in the nethouse. Concentrations of N and P were found much higher in the BPH body than in its host rice plants,and this elemental mismatch is an inherent constraint on meeting nutritional requirements of BPH. Nitrogen was found as a more limiting element for BPH than other nutrients in rice plants. Application of N fertilizers to the rice plants increased the N concentrations both in rice plants and BPH while application of P and K fertilizers increased their concentrations in plant tissues only but not in BPH. Nitrogen application also increased the level of soluble proteins and decreased silicon content in rice plants,which resulted in increased feeding of BPH with sharp reduction of RWC in rice plants ultimately caused susceptible to the pest. P fertilization increased the concentration of P in rice plant tissues but not changed N,K,Si,free sugar and soluble protein contents,which indicated little importance of P to the feeding of BPH and tolerance of plant against BPH. K fertilization increased K content but reduced N,Si,free sugar and soluble protein contents in the plant tissues which resulted in the minimum reduction of RWC in rice plants after BPH feeding,thereby contributed to higher tolerance of rice plants to brown planthopper.展开更多
Tissue and systemic inflammation have been the main culprit behind the cellular response to multiple insults and maintaining homeostasis.Obesity is an independent disease state that has been reported as a common risk ...Tissue and systemic inflammation have been the main culprit behind the cellular response to multiple insults and maintaining homeostasis.Obesity is an independent disease state that has been reported as a common risk factor for multiple metabolic and microvascular diseases including nonalcoholic fatty liver disease(NAFLD),retinopathy,critical limb ischemia,and impaired angiogenesis.Sterile inflammation driven by high-fat diet,increased formation of reactive oxygen species,alteration of intracellular calcium level and associated release of inflammatory mediators,are the main common underlying forces in the pathophysiology of NAFLD,ischemic retinopathy,stroke,and aging brain.This work aims to examine the contribution of the pro-oxidative and pro-inflammatory thioredoxin interacting protein(TXNIP)to the expression and activation of NLRP3-inflammasome resulting in initiation or exacerbation of sterile inflammation in these disease states.Finally,the potential for TXNIP as a therapeutic target and whether TXNIP expression can be modulated using natural antioxidants or repurposing other drugs will be discussed.展开更多
In this study, we report the cost-effective and simple synthesis of carbon-coated α-MnOnanoparticles(α-MnO@C) for use as cathodes of aqueous zinc-ion batteries(ZIBs) for the first time. α-MnO@C was prepared via a g...In this study, we report the cost-effective and simple synthesis of carbon-coated α-MnOnanoparticles(α-MnO@C) for use as cathodes of aqueous zinc-ion batteries(ZIBs) for the first time. α-MnO@C was prepared via a gel formation, using maleic acid(CHO) as the carbon source, followed by annealing at low temperature of 270 °C. A uniform carbon network among the α-MnOnanoparticles was observed by transmission electron microscopy. When tested in a zinc cell, the α-MnO@C exhibited a high initial discharge capacity of 272 m Ah/g under 66 m A/g current density compared to 213 m Ah/g, at the same current density, displayed by the pristine sample. Further, α-MnO@C demonstrated superior cycleability compared to the pristine samples. This study may pave the way for the utilizing carbon-coated MnOelectrodes for aqueous ZIB applications and thereby contribute to realizing high performance eco-friendly batteries.展开更多
Meteorological changes urge engineering communities to look for sustainable and clean energy technologies to keep the environment safe by reducing CO_(2) emissions.The structure of these technologies relies on the dee...Meteorological changes urge engineering communities to look for sustainable and clean energy technologies to keep the environment safe by reducing CO_(2) emissions.The structure of these technologies relies on the deep inte-gration of advanced data-driven techniques which can ensure efficient energy generation,transmission,and distribu-tion.After conducting thorough research for more than a decade,the concept of the smart grid(SG)has emerged,and its practice around the world paves the ways for efficient use of reliable energy technology.However,many developing features evoke keen interest and their improvements can be regarded as the next-generation smart grid(NGSG).Also,to deal with the non-linearity and uncertainty,the emergence of data-driven NGSG technology can become a great initiative to reduce the diverse impact of non-linearity.This paper exhibits the conceptual framework of NGSG by enabling some intelligent technical features to ensure its reliable operation,including intelligent control,agent-based energy conversion,edge computing for energy management,internet of things(IoT)enabled inverter,agent-oriented demand side management,etc.Also,a study on the development of data-driven NGSG is discussed to facilitate the use of emerging data-driven techniques(DDTs)for the sustainable operation of the SG.The prospects of DDTs in the NGSG and their adaptation challenges in real-time are also explored in this paper from various points of view including engineering,technology,et al.Finally,the trends of DDTs towards securing sustainable and clean energy evolution from the NGSG technology in order to keep the environment safe is also studied,while some major future issues are highlighted.This paper can offer extended support for engineers and researchers in the context of data-driven technology and the SG.展开更多
AIM To elucidate how high diet-induced endoplasmic reticulum-stress upregulates thioredoxin interacting protein expression in Müller cells leading to retinal inflammation. METHODS Male C57Bl/J mice were fed eithe...AIM To elucidate how high diet-induced endoplasmic reticulum-stress upregulates thioredoxin interacting protein expression in Müller cells leading to retinal inflammation. METHODS Male C57Bl/J mice were fed either normal diet or 60% high fat diet for 4-8 wk. During the 4 wk study, mice received phenyl-butyric acid(PBA); endoplasmic reticulum-stress inhibitor; for 2 wk. Insulin resistance was assessed by oral glucose tolerance. Effects of palmitate-bovine serum albumin(BSA)(400 μmol/L) were examined in retinal Müller glial cell line and primary Müller cells isolated from wild type and thioredoxin interacting protein knock-out mice. Expression of thioredoxin interacting protein, endoplasmic reticulum-stress markers, mi R-17-5p m RNA, as well as nucleotide-binding oligomerization domain-like receptor protein(NLRP3) and IL1β protein was determined.RESULTS High fat diet for 8 wk induced obesity and insulin resistance evident by increases in body weight and impaired glucose tolerance. By performing quantitative real-time polymerase chain reaction, we found that high fat diet triggered the expression of retinal endoplasmic reticulum-stress markers(P < 0.05). These effects were associated with increased thioredoxin interacting protein and decreased mi R-17-5p expression, whichwere restored by inhibiting endoplasmic reticulumstress with PBA(P < 0.05). In vitro, palmitate-BSA triggered endoplasmic reticulum-stress markers, which was accompanied with reduced mi R-17-5p and induced thioredoxin interacting protein m RNA in retinal Müller glial cell line(P < 0.05). Palmitate upregulated NLRP3 and IL1β expression in primary Müller cells isolated from wild type. However, using primary Müller cells isolated from thioredoxin interacting protein knock-out mice abolished palmitate-mediated increase in NLRP3 and IL1β.CONCLUSION Our work suggests that targeting endoplasmic reticulumstress or thioredoxin interacting protein are potential therapeutic strategies for early intervention of obesityinduced retinal inflammation.展开更多
基金the National Science Foundation,grant CBET-1032979the Fluid Interfaces Reactions,Structures and Transport(FIRST)+2 种基金funded by the US Department of Energy,Office of Energy,Office of Basic Energy Sciencessupport from a grant from the US Army Research Laboratory through the Collaborative Research Alliance(CRA)for Multi Scale Multidisciplinary Modeling of Electronic Materials(MSME)the Research Board of the Ghent University(BOF)and BELSPO in the frame of IAP/7/05.
文摘The reactive force-field(ReaxFF)interatomic potential is a powerful computational tool for exploring,developing and optimizing material properties.Methods based on the principles of quantum mechanics(QM),while offering valuable theoretical guidance at the electronic level,are often too computationally intense for simulations that consider the full dynamic evolution of a system.Alternatively,empirical interatomic potentials that are based on classical principles require significantly fewer computational resources,which enables simulations to better describe dynamic processes over longer timeframes and on larger scales.Such methods,however,typically require a predefined connectivity between atoms,precluding simulations that involve reactive events.The ReaxFF method was developed to help bridge this gap.Approaching the gap from the classical side,ReaxFF casts the empirical interatomic potential within a bond-order formalism,thus implicitly describing chemical bonding without expensive QM calculations.This article provides an overview of the development,application,and future directions of the ReaxFF method.
文摘Caffeine is the most commonly used medication for treatment of apnea of prematurity. Its effect has been well established in reducing the frequency of apnea, intermittent hypoxemia, and extubation failure in mechanically ventilated preterm infants. Evidence for additional short-term benefits on reducing the incidence of bronchopulmonary dysplasia and patent ductus arteriosus has also been suggested. Controversies existamong various neonatal intensive care units in terms of drug efficacy compared to other methylxanthines, dosage regimen, time of initiation, duration of therapy, drug safety and value of therapeutic drug monitoring. In the current review, we will summarize the available evidence for the best practice in using caffeine therapy in preterm infants.
基金This research did not receive any specific grant from funding agencies in the public,commercial,or not-for-profit sectors.We thank Mr.Philip Alarcon-Furman for assistance with English editing,and for comments that greatly improved the manuscript.
文摘In recent years,there have been increasingly rapid advances of using bioactive materials in tissue engineering applications.Bioactive materials constitute many different structures based upon ceramic,metallic or polymeric materials,and can elicit specific tissue responses.However,most of them are relatively brittle,stiff,and difficult to form into complex shapes.Hence,there has been a growing demand for preparing materials with tailored physical,biological,and mechanical properties,as well as predictable degradation behavior.Chitosan-based materials have been shown to be ideal bioactive materials due to their outstanding properties such as formability into different structures,and fabricability with a wide range of bioactive materials,in addition to their biocompatibility and biodegradability.This review highlights scientific findings concerning the use of innovative chitosan-based bioactive materials in the fields of tissue engineering,with an outlook into their future applications.It also covers latest developments in terms of constituents,fabrication technologies,structural,and bioactive properties of these materials that may represent an effective solution for tissue engineering materials,making them a realistic clinical alternative in the near future.
基金Project supported by the Science and Technology Ministry of China (No. 2002CB410804) and the Education Ministry of China (No. IRT0536)
文摘Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary toxicity.
文摘An intrusion detection system collects and analyzes information from different areas within a computer or a network to identify possible security threats that include threats from both outside as well as inside of the organization. It deals with large amount of data, which contains various ir-relevant and redundant features and results in increased processing time and low detection rate. Therefore, feature selection should be treated as an indispensable pre-processing step to improve the overall system performance significantly while mining on huge datasets. In this context, in this paper, we focus on a two-step approach of feature selection based on Random Forest. The first step selects the features with higher variable importance score and guides the initialization of search process for the second step whose outputs the final feature subset for classification and in-terpretation. The effectiveness of this algorithm is demonstrated on KDD’99 intrusion detection datasets, which are based on DARPA 98 dataset, provides labeled data for researchers working in the field of intrusion detection. The important deficiency in the KDD’99 data set is the huge number of redundant records as observed earlier. Therefore, we have derived a data set RRE-KDD by eliminating redundant record from KDD’99 train and test dataset, so the classifiers and feature selection method will not be biased towards more frequent records. This RRE-KDD consists of both KDD99Train+ and KDD99Test+ dataset for training and testing purposes, respectively. The experimental results show that the Random Forest based proposed approach can select most im-portant and relevant features useful for classification, which, in turn, reduces not only the number of input features and time but also increases the classification accuracy.
基金This study was financially supported by the National Natural Science Foundation of China(31972224,31430069,and 31620103913)the National Key R&D Program of China(2018YFD0200402)the 111 Project from the Ministry of Education of China(no.B07049).
文摘Puccinia striiformis f.sp.tritici(Pst),a biotrophic plant pathogen,secretes numerous effectors to modulate host defense systems.Understanding the molecular mechanisms by which Pst effectors regulate wheat immunity is of great importance for the development of novel strategies for durable control of stripe rust.In this study,we identified a glycine-serine-rich effector gene,PstGSRE1,which is highly induced dur-ing early infection.Transgenic expression of PstGSRE1 RNAi constructs in wheat significantly reduced virulence of Pst and increased H2O2 accumulation in wheat.PstGSRE1 was shown to target the reactive ox-ygen species(ROS)-associated transcription factor TaLOL2,a positive regulator of wheat immunity.PstGSRE1 disrupted nuclear localization of TaLOL2 and suppressed ROS-mediated cell death induced by TaLOL2,thus compromising host immunity.This work reveals a previously unrecognized strategy whereby rust fungi exploit the PstGSRE1 effector to defeat ROS-associated plant defense by modulating the subcellular compartment of a host immune regulator and facilitate pathogen infection.
文摘Background Development of myopia among young children is often contributed to the refractive status of the parents. This study was conducted to determine whether myopia can be inherited across the generation among a sample in the Klang Valley. Three generations involved are: G1 (grandparents), G2 (parents) and G3 (children). Methods Sixty-two families were screened and forty families were selected to participate in this study. The inclusion criterion is having at least one myopic member in any of the three generations. Subjects (G2) were first asked to fill up a questionnaire form before their refractive status was determined by clinical examination that provided acuity of 6/6 or better. Refractive status of G1 was determined using information from the questionnaire while for G2 and G3 through clinical examination. Results Generally, the prevalence of myopia is seen to increase throughout the generations from G1 being the lowest (25.6%) to G3 being the highest (41.1%). Strong genetic influence can be found between G1 and G2 as majority of myopes in G2 is when both parents were myopic. However, although the prevalence of myopia increased from G2 to G3, there was no strong genetical influence. Majority of subjects in G3 were non-myopes when both their parents were myopic. Conclusion Parental historv accounts for a limited DrODOrtion of variance in mvoeia development.
文摘The brown planthopper(BPH),Nilaparvata lugens(St?l),appeared as a devastating pest of rice in Asia. Experiments were conducted to study the effects of three nutrients,nitrogen(N),phosphorus(P) and potassium(K),on BPH and its host rice plants. Biochemical constituents of BPH and rice plants with varying nutrient levels at different growth stages,and changes in relative water content(RWC) of rice plants were determined in the laboratory. Feeding of BPH and the tolerance of rice plants to BPH with different nutrient levels were determined in the nethouse. Concentrations of N and P were found much higher in the BPH body than in its host rice plants,and this elemental mismatch is an inherent constraint on meeting nutritional requirements of BPH. Nitrogen was found as a more limiting element for BPH than other nutrients in rice plants. Application of N fertilizers to the rice plants increased the N concentrations both in rice plants and BPH while application of P and K fertilizers increased their concentrations in plant tissues only but not in BPH. Nitrogen application also increased the level of soluble proteins and decreased silicon content in rice plants,which resulted in increased feeding of BPH with sharp reduction of RWC in rice plants ultimately caused susceptible to the pest. P fertilization increased the concentration of P in rice plant tissues but not changed N,K,Si,free sugar and soluble protein contents,which indicated little importance of P to the feeding of BPH and tolerance of plant against BPH. K fertilization increased K content but reduced N,Si,free sugar and soluble protein contents in the plant tissues which resulted in the minimum reduction of RWC in rice plants after BPH feeding,thereby contributed to higher tolerance of rice plants to brown planthopper.
文摘Tissue and systemic inflammation have been the main culprit behind the cellular response to multiple insults and maintaining homeostasis.Obesity is an independent disease state that has been reported as a common risk factor for multiple metabolic and microvascular diseases including nonalcoholic fatty liver disease(NAFLD),retinopathy,critical limb ischemia,and impaired angiogenesis.Sterile inflammation driven by high-fat diet,increased formation of reactive oxygen species,alteration of intracellular calcium level and associated release of inflammatory mediators,are the main common underlying forces in the pathophysiology of NAFLD,ischemic retinopathy,stroke,and aging brain.This work aims to examine the contribution of the pro-oxidative and pro-inflammatory thioredoxin interacting protein(TXNIP)to the expression and activation of NLRP3-inflammasome resulting in initiation or exacerbation of sterile inflammation in these disease states.Finally,the potential for TXNIP as a therapeutic target and whether TXNIP expression can be modulated using natural antioxidants or repurposing other drugs will be discussed.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIP)(2014R1A2A1A10050821)
文摘In this study, we report the cost-effective and simple synthesis of carbon-coated α-MnOnanoparticles(α-MnO@C) for use as cathodes of aqueous zinc-ion batteries(ZIBs) for the first time. α-MnO@C was prepared via a gel formation, using maleic acid(CHO) as the carbon source, followed by annealing at low temperature of 270 °C. A uniform carbon network among the α-MnOnanoparticles was observed by transmission electron microscopy. When tested in a zinc cell, the α-MnO@C exhibited a high initial discharge capacity of 272 m Ah/g under 66 m A/g current density compared to 213 m Ah/g, at the same current density, displayed by the pristine sample. Further, α-MnO@C demonstrated superior cycleability compared to the pristine samples. This study may pave the way for the utilizing carbon-coated MnOelectrodes for aqueous ZIB applications and thereby contribute to realizing high performance eco-friendly batteries.
文摘Meteorological changes urge engineering communities to look for sustainable and clean energy technologies to keep the environment safe by reducing CO_(2) emissions.The structure of these technologies relies on the deep inte-gration of advanced data-driven techniques which can ensure efficient energy generation,transmission,and distribu-tion.After conducting thorough research for more than a decade,the concept of the smart grid(SG)has emerged,and its practice around the world paves the ways for efficient use of reliable energy technology.However,many developing features evoke keen interest and their improvements can be regarded as the next-generation smart grid(NGSG).Also,to deal with the non-linearity and uncertainty,the emergence of data-driven NGSG technology can become a great initiative to reduce the diverse impact of non-linearity.This paper exhibits the conceptual framework of NGSG by enabling some intelligent technical features to ensure its reliable operation,including intelligent control,agent-based energy conversion,edge computing for energy management,internet of things(IoT)enabled inverter,agent-oriented demand side management,etc.Also,a study on the development of data-driven NGSG is discussed to facilitate the use of emerging data-driven techniques(DDTs)for the sustainable operation of the SG.The prospects of DDTs in the NGSG and their adaptation challenges in real-time are also explored in this paper from various points of view including engineering,technology,et al.Finally,the trends of DDTs towards securing sustainable and clean energy evolution from the NGSG technology in order to keep the environment safe is also studied,while some major future issues are highlighted.This paper can offer extended support for engineers and researchers in the context of data-driven technology and the SG.
文摘AIM To elucidate how high diet-induced endoplasmic reticulum-stress upregulates thioredoxin interacting protein expression in Müller cells leading to retinal inflammation. METHODS Male C57Bl/J mice were fed either normal diet or 60% high fat diet for 4-8 wk. During the 4 wk study, mice received phenyl-butyric acid(PBA); endoplasmic reticulum-stress inhibitor; for 2 wk. Insulin resistance was assessed by oral glucose tolerance. Effects of palmitate-bovine serum albumin(BSA)(400 μmol/L) were examined in retinal Müller glial cell line and primary Müller cells isolated from wild type and thioredoxin interacting protein knock-out mice. Expression of thioredoxin interacting protein, endoplasmic reticulum-stress markers, mi R-17-5p m RNA, as well as nucleotide-binding oligomerization domain-like receptor protein(NLRP3) and IL1β protein was determined.RESULTS High fat diet for 8 wk induced obesity and insulin resistance evident by increases in body weight and impaired glucose tolerance. By performing quantitative real-time polymerase chain reaction, we found that high fat diet triggered the expression of retinal endoplasmic reticulum-stress markers(P < 0.05). These effects were associated with increased thioredoxin interacting protein and decreased mi R-17-5p expression, whichwere restored by inhibiting endoplasmic reticulumstress with PBA(P < 0.05). In vitro, palmitate-BSA triggered endoplasmic reticulum-stress markers, which was accompanied with reduced mi R-17-5p and induced thioredoxin interacting protein m RNA in retinal Müller glial cell line(P < 0.05). Palmitate upregulated NLRP3 and IL1β expression in primary Müller cells isolated from wild type. However, using primary Müller cells isolated from thioredoxin interacting protein knock-out mice abolished palmitate-mediated increase in NLRP3 and IL1β.CONCLUSION Our work suggests that targeting endoplasmic reticulumstress or thioredoxin interacting protein are potential therapeutic strategies for early intervention of obesityinduced retinal inflammation.