The immediate post-weaning period is one of the most stressful phases in a pig's life, and during this period, piglets are usually exposed to environmental, social and psychological stressors which have direct or ...The immediate post-weaning period is one of the most stressful phases in a pig's life, and during this period, piglets are usually exposed to environmental, social and psychological stressors which have direct or indirect effects on gut health and overall growth performance. In this review, the impact of husbandry practices on gut health outcomes and performance of piglets is discussed. Husbandry practices in the swine barn generally include nutrition and management practices, maintenance of hygienic standards and disease prevention protocols, and animal welfare considerations. Poor husbandry practices could result in reduced feed intake, stress and disease conditions, and consequently affect gut health and performance in weaned piglets. Reduced feed intake is a major risk factor for impaired gut structure and function and therefore a key goal is to maximize feed intake in newly weaned piglets. In weaned piglets, crowding stress could reduce pig performance, favor the proliferation of pathogenic bacteria resulting in diarrhea, stimulate immune responses and interfere with beneficial microbial activities in the gut. Sanitation conditions in the swine barn plays an important role for optimal piglet performance, because unclean conditions reduced growth performance, shifted nutrient requirements to support the immune system and negatively affected the gut morphology in weaned piglets. Appropriate biosecurity measures need to be designed to prevent disease entry and spread within a swine operation,which in turn helps to keep all pigs and piglets healthy. Collectively, husbandry practices relating to feeding and nutrition, animal welfare, biosecurity and disease prevention are important determinants of gut health and piglet performance. Thus, it is suggested that adopting high husbandry practices is a critical piece in strategies aimed at raising pigs without the use of in-feed antibiotics.展开更多
For years,foot ulcers linked with diabetes mellitus and neuropathy have significantly impacted diabetic patients’ health-related quality of life(HRQoL). Diabetes foot ulcers impact15% of all diabetic patients at some...For years,foot ulcers linked with diabetes mellitus and neuropathy have significantly impacted diabetic patients’ health-related quality of life(HRQoL). Diabetes foot ulcers impact15% of all diabetic patients at some point in their lives. The facilities and resources used for DFU detection and treatment are only available at hospitals and clinics,which results in the unavailability of feasible and timely detection at an early stage. This necessitates the development of an at-home DFU detection system that enables timely predictions and seamless communication with users,thereby preventing amputations due to neglect and severity. This paper proposes a feasible system consisting of three major modules:an IoT device that works to sense foot nodes to send vibrations onto a foot sole,a machine learning model based on supervised learning which predicts the level of severity of the DFU using four different classification techniques including XGBoost,K-SVM,Random Forest,and Decision tree,and a mobile application that acts as an interface between the sensors and the patient. Based on the severity levels,necessary steps for prevention,treatment,and medications are recommended via the application.展开更多
Diabetes mellitus is associated with foot ulcers,which frequently pave the way to lower-extremity amputation.Neuropathy,trauma,deformity,high plantar pressures,and peripheral vascular disease are the most common under...Diabetes mellitus is associated with foot ulcers,which frequently pave the way to lower-extremity amputation.Neuropathy,trauma,deformity,high plantar pressures,and peripheral vascular disease are the most common underlying causes.Around 15%of diabetic patients are affected by diabetic foot ulcer in their lifetime.64 million people are affected by diabetics in India and 40000 amputations are done every year.Foot ulcers are evaluated and classified in a systematic and thorough manner to assist in determining the best course of therapy.This paper proposes a novel model which predicts the threat of diabetic foot ulcer using independent agents for various input values and a combination of fuzzy expert systems.The proposed model uses a classification system to distinguish between each fuzzy framework and its parameters.Based on the severity levels necessary prevention,treatment,and medication are recommended.Combining the results of all the fuzzy frameworks derived from its constituent parameters,a risk-specific medication is recommended.The work also has higher accuracy when compared to other related models.展开更多
The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and...The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.展开更多
Background: Homocysteine (tHcy) has emerged as a new risk factor for cardiovascular diseases (CVD) The Methylenetetrahydrofolate reductase (MTHFR) polymorphisms are seen to give rise to high levels of tHcy which can b...Background: Homocysteine (tHcy) has emerged as a new risk factor for cardiovascular diseases (CVD) The Methylenetetrahydrofolate reductase (MTHFR) polymorphisms are seen to give rise to high levels of tHcy which can be a causative factor in the progression of CVD due to its thrombogenic effect. Serum cardiac biomarkers help in the diagnosis, prognosis, or surveillance of CVD. The present study evaluated the association of the two MTHFR mutations, rs1801133 and rs1801131 with 16 well-established serum cardiac markers. Additionally, the influence of age and gender on the association of the two MTHFR polymorphisms with serum cardiac marker levels was also investigated. Methods: The study was carried out on 1295 individuals who visited Vibrant America Clinical Lab for regular or suspected CVD check-ups. The serological markers and genomic variant analysis were carried out as per the standard laboratory protocol under CLIA. The association between serological markers and the rs1801133 and rs1801131 genetic variants with respect to age and gender was evaluated using a one-way ANNOVA test. Results: No significant association was observed in tHcy levels with respect to gender, however, plasma total tHcy levels were higher in males than females. tHcy levels increased with increasing age in the wild and heterozygous genotypes for the mutations, rs1801133 and rs1801131. Additionally, the serum cardiac markers, High Density Lipoprotein (HDL), Low Density Lipoprotein (LDL), Cholesterol (CHOL), Apolipoprotein A (APOA), Apolipoprotein B (APOB), N-terminal (NT)-pro hormone BNP (BNPNT), LDL calculated (LDLCAL), Small Density Low Density Lipoprotein (SDLDL), APOBAR, Oxidised Low Density Lipoprotein (OXLDL), Lipoprotein (A) (LPA), Triglycerides (TRIG), and Lipoprotein-Associated Phospholipase (Lp-PLA2) Test (PLAC) showed significant associations with respect to gender and age for rs1801133 and rs1801131 (P Conclusions: The present study reports the association of tHcy, HDL, LDL, CHOL, APOA, APOB, BNPNT, LDLCAL, SDLDL, APOBAR, OXLDL展开更多
Thyroid metabolism is orchestrated by the action of various minerals and trace elements including iron, iodine, selenium, and zinc. Iron deficiency, specifically deficiency in serum ferritin levels, is one of the comm...Thyroid metabolism is orchestrated by the action of various minerals and trace elements including iron, iodine, selenium, and zinc. Iron deficiency, specifically deficiency in serum ferritin levels, is one of the common causes of thyroid dysfunction. Our objective was to evaluate the relationship between serum ferritin levels and circulating thyroid hormones. For this, a retrospective analysis was performed on 16,512 individuals who tested for serum levels of ferritin and thyroid profile at Vibrant America Clinical Laboratories. Subjects were stratified based on the serum levels of ferritin. Age (p −0.03232, p < 0.0001). Analysis of Linear association by Pearson’s correlation exhibited a considerable correlation between varying serum ferritin levels with all tested thyroid hormones. The study concludes that serum ferritin levels were associated with thyroid hormone synthesis and metabolism in individuals with optimal levels of circulating ferritin.展开更多
Biomarkers are early predictors of various disorders, circulating level of C-reactive protein is a sensitive biomarker of systemic inflammation and may also be associated with the development of diabetic, hepatic, and...Biomarkers are early predictors of various disorders, circulating level of C-reactive protein is a sensitive biomarker of systemic inflammation and may also be associated with the development of diabetic, hepatic, and cardiovascular diseases. In the present study, we aimed to investigate the association between circulating levels of high sensitive C-reactive protein (hs-CRP) and various biomarkers for hepatic, diabetic, and cardiovascular health. The retrospective analysis included 438 individuals who were tested for these panels simultaneously at Vibrant America Clinical Laboratory. The study population included free-living individuals without any preexisting clinical conditions. Among the cardiovascular markers, a positive correlation and significant association was found between high levels of hs-CRP and serum levels of triglycerides (r = 0.0964, p −0.1423, p −0.1216, p < 0.0105) with circulating levels of hs-CRP. Among all the diabetic markers, glucose (r = 0.1547, p < 0.0011) and glycated serum protein (r = 0.1725, p < 0.0003) were positively correlated with circulating hs-CRP. In the hepatic panel, AST, a transaminase that plays a vital role in amino acid metabolism, was found to have a strong positive correlation with hs-CRP (r = 0.2139, p < 0.0001). In conclusion, the results clearly show the association of hs-CRP with diabetic, hepatic, and cardiovascular risk factors indicating its central value as a key marker for several lifestyle-associated disorders.展开更多
Thymoquinone(TQ), an active component derived from the medial plant Nigella sativa, has been used for medical purposes for more than 2 000 years. Recent studies have reported that TQ blocked angiogenesis in animal mod...Thymoquinone(TQ), an active component derived from the medial plant Nigella sativa, has been used for medical purposes for more than 2 000 years. Recent studies have reported that TQ blocked angiogenesis in animal model and reduced migration, adhesion, and invasion of glioblastoma cells. We have recently shown that TQ could exhibit a potent cytotoxic effect and induce apoptosis in mouse neuroblastoma(Neuro-2a) cells. In the present study, TQ treatment markedly decreased the adhesion and migration of Neuro-2a cells. TQ down-regulated MMP-2 and MMP-9 protein expression and m RNA levels and their activities. Furthermore, TQ significantly down-regulated the protein expression of transcription factor NF-κB(p65) but not significantly altered the expression of N-Myc. Taken together, our data indicated that TQ's inhibitory effect on the migration of Neuro-2a cells was mediated through the suppression of MMP-2 and MMP-9 expression, suggesting that TQ treatment can be a promising therapeutic strategy for human malignant neuroblastoma.展开更多
We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed ...We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed laser ablation of Co,Fe,Ti,and Mo metals in acetone.The interaction between carbon s-p-orbitals and metal d-orbitals causes a redistribution of valence structure through charge transfer,leading to the formation of surface defects as observed by X-ray photoelectron spectroscopy.These defects influence the evolved TMCs,making them effective for hydrogen and oxygen evolution reactions(HER and OER)in an alkaline medium.Co_(3)C with more oxygen affinity promoted CoO(OH)intermediates,and the electrochemical surface oxidation to Co_(3)O_(4)was captured via in situ/operando electrochemical Raman probes,increasing the number of active sites for OER activity.MoC with more d-vacancies exhibits strong hydrogen binding,promoting HER kinetics,whereas Fe_(3)C and TiC with more defect states to trap charge carriers may hinder both OER and HER activities.The results show that the assembled membrane-less electrolyzer with Co_(3)C∥Co_(3)C and MoC∥MoC electrodes requires~2.01 and 1.99 V,respectively,to deliver a 10 mA cm−2 with excellent electrochemical and structural stability.In addition,the ascertained pulsed laser synthesis mechanism and unit-cell packing relations will open up sustainable pathways for obtaining highly stable electrocatalysts for electrolyzers.展开更多
Two 21 d-experiments were conducted to determine the optimum standardized ileal digestible(SID)threonine:lysine ratio(Thr:Lys) for weaned piglets reared under clean(Exp. 1) or unclean(Exp. 2) sanitary conditions and f...Two 21 d-experiments were conducted to determine the optimum standardized ileal digestible(SID)threonine:lysine ratio(Thr:Lys) for weaned piglets reared under clean(Exp. 1) or unclean(Exp. 2) sanitary conditions and fed antibiotic-free diets. In each experiment, 90 mixed-sex pigs(Duroc × [Yorkshire × Landrace]; initial BW 7.2 ± 0.3 kg) were randomly assigned to 5 dietary treatments each with 6 replicates(3 pigs per pen). The dietary treatments were 5 graded levels of SID Thr:Lys(55,59, 63, 67 and 71%). Diets were corn-wheat-soybean meal-based with a constant SID Lys of 1.18% that was set to be second limiting amino acid. In Exp. 1 and Exp. 2, plasma-free Thr increased(P = 0.05) with increasing dietary SID Thr:Lys. In Exp. 1, the SID Thr:Lys for gain-to-feed ratio(G:F) was optimized at 65%.In Exp. 2, the estimated optimal SID Thr:Lys for overall G:F was 66.5%. In conclusion, an average optimal SID Thr:Lys of 65 and 66.5% could be used to optimize feed efficiency for weaned pigs under clean and unclean sanitary conditions, respectively.展开更多
Here,furfural oxidation was performed to replace the kinetically sluggish O_(2)evolution reaction(OER).Pt-Co_(3)O_(4)nanospheres were developed via pulsed laser ablation in liquid(PLAL)in a single step for the paired ...Here,furfural oxidation was performed to replace the kinetically sluggish O_(2)evolution reaction(OER).Pt-Co_(3)O_(4)nanospheres were developed via pulsed laser ablation in liquid(PLAL)in a single step for the paired electrocatalysis of an H_(2)evolution reaction(HER)and furfural oxidation reaction(FOR).The FOR afforded a high furfural conversion(44.2%)with a major product of 2-furoic acid after a 2-h electrolysis at 1.55 V versus reversible hydrogen electrode in a 1.0-M KOH/50-mM furfural electrolyte.The Pt-Co_(3)O_(4)electrode exhibited a small overpotential of 290 mV at 10 mA cm^(-2).As an anode and cathode in an electrolyzer system,the Pt-Co_(3)O_(4)electrocatalyst required only a small applied cell voltage of~1.83 V to deliver 10 mA cm^(-2),compared with that of the pure water electrolyzer(OER||HER,~1.99 V).This study simultaneously realized the integrated production of energy-saving H_(2)fuel at the cathode and 2-furoic acid at the anode.展开更多
Optimizing the structure and components is a prevalent strategy for increasing electrocatalytic energy-saving H 2 fuel production.One of the sustainable and efficient techniques is electrocatalytic water split-ting fo...Optimizing the structure and components is a prevalent strategy for increasing electrocatalytic energy-saving H 2 fuel production.One of the sustainable and efficient techniques is electrocatalytic water split-ting for H 2 generation,but it is still restricted by the kinetically sluggish OER.Due to the lower standard oxidation potential of−0.33 V,replacing the OER with anodic hydrazine oxidation reaction(HzOR)is an effective way to extensively reduce the use of electricity in water electrolysis.Through alloying,the semiconductor and adsorption characteristics of Cu,interlaced by Pd 2+solution on the Pd surface by pulsed laser ablation(PLA)in methanol,are selectively altered to maximize cathodic HER and anodic HzOR performance.The optimal Cu1Pd3/C ratio demonstrates outstanding HER performance with a low overpotential of 0.315 V at 10 mA cm^(−2),as well as an ultralow overpotential of 0.560 V for HzOR in 0.5 M N_(2) H_(4)/1.0 M KOH.Furthermore,the constructed HzOR-assisted electrolyzer cell with Cu1Pd3/C||Cu1Pd3/C as anode and cathode exhibits a cell voltage of 0.505 V at 10 mA cm^(−2) with exceptional en-durance over 5 h.The current study advances competent CuPd alloys as multifunctional electrocatalysts for H 2 fuel production using a HzOR-assisted energy-efficient electrolyzer.展开更多
A356 is a high strength aluminium-silicon cast alloy used in food,chemical,marine,electrical and automotive industries.Fusion welding of this cast alloy will lead to many problems such as porosity,micro-fissuring,and ...A356 is a high strength aluminium-silicon cast alloy used in food,chemical,marine,electrical and automotive industries.Fusion welding of this cast alloy will lead to many problems such as porosity,micro-fissuring,and hot cracking.However,friction stir welding(FSW) can be used to weld this cast alloy without above mentioned defects.An attempt was made to study the effect of FSW process parameters on the tensile strength of cast A356 aluminium alloy.Joints were made using different combinations of tool rotation speed,welding speed and axial force.The quality of weld zone was analyzed by macrostructure and microstructure analyses.Tensile strengths of the joints were evaluated and correlated with the weld zone hardness and microstructure.The joint fabricated using a rotational speed of 1000 r/min,a welding speed of 75 mm/min and an axial force of 5 kN showed a higher tensile strength compared to the other joints.展开更多
Waste production rises in tandem with population growth and increased utilization.The indecorous disposal of waste paves the way for huge disaster named as climate change.The National Environment Agency(NEA)of Singapo...Waste production rises in tandem with population growth and increased utilization.The indecorous disposal of waste paves the way for huge disaster named as climate change.The National Environment Agency(NEA)of Singapore oversees the sustainable management of waste across the country.The three main contributors to the solid waste of Singapore are paper and cardboard(P&C),plastic,and food scraps.Besides,they have a negligible rate of recycling.In this study,Machine Learning techniques were utilized to forecast the amount of garbage also known as waste audits.The waste audit would aid the authorities to plan their waste infrastructure.The applied models were k-nearest neighbors,Support Vector Regressor,ExtraTrees,CatBoost,and XGBoost.The XGBoost model with its default parameters performed better with a lower Mean Absolute Percentage Error(MAPE)of 8.3093(P&C waste),8.3217(plastic waste),and 6.9495(food waste).However,Grid Search Optimization(GSO)was used to enhance the parameters of the XGBoost model,increasing its effectiveness.Therefore,the optimized XGBoost algorithm performs the best for P&C,plastics,and food waste with MAPE of 4.9349,6.7967,and 5.9626,respectively.The proposed GSO-XGBoost model yields better results than the other employed models in predicting municipal solid waste.展开更多
This paper reports the effect of friction stir welding (FSW) process parameters on tensile strength of cast LM6 aluminium alloy. Joints were made by using different combinations of tool rotation speed, welding speed...This paper reports the effect of friction stir welding (FSW) process parameters on tensile strength of cast LM6 aluminium alloy. Joints were made by using different combinations of tool rotation speed, welding speed and axial force each at four levels. The quality of weld zone was investigated using macrostructure and microstructure analysis. Tensile strength of the joints were evaluated and correlated with the weld zone hardness and microstructure. The joint fabricated using a rotational speed of 900 r/min, a welding speed of 75 mm/min and an axial force of 3 kN showed superior tensile strength compared with other joints. The tensile strength and microhardness of the welded joints for the optimum conditions were 166 MPa and 64.8 Hv respectively.展开更多
Background: The management of patients with synchronous colorectal liver metastases (sCRLM) has evolved significantly (improved chemotherapy, hepatic surgery advancements, colonic stenting, consultation synergies). We...Background: The management of patients with synchronous colorectal liver metastases (sCRLM) has evolved significantly (improved chemotherapy, hepatic surgery advancements, colonic stenting, consultation synergies). We sought to better understand surgeon viewpoints on optimal referral patterns and the delivery of simultaneous resections. Methods: A 40 question on-line survey was offered to members of the Canadian surgical community. Statistical analysis was descriptive. Results: A total of 52 surgeons responded. Most colorectal surgeons (CRS) had access to and a good working relationship with regional hepatobiliary (HPB) surgeons (86%) and medical oncologists (100%). The majority (92%) believed there was a role for simultaneous resection of sCRLM, with 69% having first hand experience. Many CRS (62%) discussed all cases of known hepatic metastases with HPB prior to any resection. When a lesion was asymptomatic/minimally symptomatic, most CRS (92%) discussed them with medical oncology/HPB prior to resection (8%). Bilobar metastases (58%), patient comorbidities (35%), portal lymphadenopathy (35%), and patient age (15%) restricted CRS from obtaining HPB consultations. Many CRS (46%) did not believe that resecting hepatic metastases prior to the primary lesion might be beneficial. Most CRS (60%) reported they could not accurately predict hepatic resectability, with only 27%familiarity with evidence-based guidelines. Despite working in smaller hospitals with less access to HPB and less experience with simultaneous resections, non-CR general surgeons more commonly supported a 'liver-first' approach. Conclusions: There was general agreement between CRS and general surgeons on numerous topics, but additional education is required with regard to HPB surgical capabilities and to provide truly individualized patient-centered care.展开更多
Nowadays,wireless sensor networks play a vital role in our day to day life.Wireless communication is preferred for many sensing applications due its convenience,flexibility and effectiveness.The sensors to sense the en...Nowadays,wireless sensor networks play a vital role in our day to day life.Wireless communication is preferred for many sensing applications due its convenience,flexibility and effectiveness.The sensors to sense the environmental factor are versatile and send sensed data to central station wirelessly.The cluster based protocols are provided an optimal solution for enhancing the lifetime of the sensor networks.In this paper,modified K-means++algorithm is used to form the cluster and cluster head in an efficient way and the Advanced Energy-Efficient Cluster head selection Algorithm(AEECA)is used to calculate the weighted fac-tor of the transmission path and effective data collection using gateway node.The experimental results show the proposed algorithm outperforms the existing routing algorithms.展开更多
The single-pot production of Pd@Pt core-shell structures is a promising approach as it offers large surface area,catalytic capability,and stability.In this work,we established a single-pot process to produce Pd@Pt cor...The single-pot production of Pd@Pt core-shell structures is a promising approach as it offers large surface area,catalytic capability,and stability.In this work,we established a single-pot process to produce Pd@Pt core-shell nanodendrites with tunable composition,shape and size for optimal electrochemical activity.Pd@Pt nanodendrites with diverse compositions were synthesized by tuning the ratios of Pd and Pt sources in an aqueous environment using cetyltrimethylammonium chloride,which functioned as both the surfactant and the reducing agent at an elevated temperature(90°C).The synthesized Pd5@Pt5 nanodendrites showed exceptional electrochemical action toward the methanol oxidation reaction related with another compositional Pd@Pt nanodendrites and conventional Pt/C electrocatalysts.In addition,Pd5@Pt5 nanodendrites exhibited good CO tolerance owing to their surface features and the synergistic effect among Pt and Pd.Meanwhile,nanodendrites with a Pt-rich surface provided exceptional catalytic active sites.Compared with the conventional Pt/C electrocatalyst,the anodic peak current obtained by Pd5@Pt5 nanodendrites was 3.74 and 2.18 times higher in relations of mass and electrochemical active surface area-normalized current density,respectively.This approach offers an attractive strategy to design electrocatalysts with unique structures and outstanding catalytic performance and stability for electrochemical energy conversion.展开更多
Here,CuO nanorods fabricated via pulsed laser ablation in liquids were decorated with Ir,Pd,and Ru NPs(loading~7 wt%) through pulsed laser irradiation in the liquids process.The resulting NPs-decorated CuO nanorods we...Here,CuO nanorods fabricated via pulsed laser ablation in liquids were decorated with Ir,Pd,and Ru NPs(loading~7 wt%) through pulsed laser irradiation in the liquids process.The resulting NPs-decorated CuO nanorods were characterized spectroscopically and employed as multifunctional electrocatalysts in OER,HER,and the furfural oxidation reactions(FOR).Ir-CuO nanorods afford the lowest overpotential of~345 mV(HER) and 414 mV(OER) at 10 mA cm^(-2),provide the highest 2-furoic acid yield(~10.85 mM) with 64.9% selectivity,and the best Faradaic efficiency~72.7% in 2 h of FOR at 1.58 V(vs.RHE).In situ electrochemical-Raman analysis of the Ir-CuO detects the formation of the crucial intermediates,such as Cu(Ⅲ)-oxide,Cu(OH)_(2),and Ir_x(OH)_y,on the electrode-electrolyte surface,which act as a promoter for HER and OER.The Ir-CuO ‖ Ir-CuO in a coupled HER and FOR-electrolyzer operates at~200 mV lower voltage,compared with the conventional electrolyzer and embodies the dual advantage of energy-saving H_(2) and 2-furoic acid production.展开更多
文摘The immediate post-weaning period is one of the most stressful phases in a pig's life, and during this period, piglets are usually exposed to environmental, social and psychological stressors which have direct or indirect effects on gut health and overall growth performance. In this review, the impact of husbandry practices on gut health outcomes and performance of piglets is discussed. Husbandry practices in the swine barn generally include nutrition and management practices, maintenance of hygienic standards and disease prevention protocols, and animal welfare considerations. Poor husbandry practices could result in reduced feed intake, stress and disease conditions, and consequently affect gut health and performance in weaned piglets. Reduced feed intake is a major risk factor for impaired gut structure and function and therefore a key goal is to maximize feed intake in newly weaned piglets. In weaned piglets, crowding stress could reduce pig performance, favor the proliferation of pathogenic bacteria resulting in diarrhea, stimulate immune responses and interfere with beneficial microbial activities in the gut. Sanitation conditions in the swine barn plays an important role for optimal piglet performance, because unclean conditions reduced growth performance, shifted nutrient requirements to support the immune system and negatively affected the gut morphology in weaned piglets. Appropriate biosecurity measures need to be designed to prevent disease entry and spread within a swine operation,which in turn helps to keep all pigs and piglets healthy. Collectively, husbandry practices relating to feeding and nutrition, animal welfare, biosecurity and disease prevention are important determinants of gut health and piglet performance. Thus, it is suggested that adopting high husbandry practices is a critical piece in strategies aimed at raising pigs without the use of in-feed antibiotics.
文摘For years,foot ulcers linked with diabetes mellitus and neuropathy have significantly impacted diabetic patients’ health-related quality of life(HRQoL). Diabetes foot ulcers impact15% of all diabetic patients at some point in their lives. The facilities and resources used for DFU detection and treatment are only available at hospitals and clinics,which results in the unavailability of feasible and timely detection at an early stage. This necessitates the development of an at-home DFU detection system that enables timely predictions and seamless communication with users,thereby preventing amputations due to neglect and severity. This paper proposes a feasible system consisting of three major modules:an IoT device that works to sense foot nodes to send vibrations onto a foot sole,a machine learning model based on supervised learning which predicts the level of severity of the DFU using four different classification techniques including XGBoost,K-SVM,Random Forest,and Decision tree,and a mobile application that acts as an interface between the sensors and the patient. Based on the severity levels,necessary steps for prevention,treatment,and medications are recommended via the application.
文摘Diabetes mellitus is associated with foot ulcers,which frequently pave the way to lower-extremity amputation.Neuropathy,trauma,deformity,high plantar pressures,and peripheral vascular disease are the most common underlying causes.Around 15%of diabetic patients are affected by diabetic foot ulcer in their lifetime.64 million people are affected by diabetics in India and 40000 amputations are done every year.Foot ulcers are evaluated and classified in a systematic and thorough manner to assist in determining the best course of therapy.This paper proposes a novel model which predicts the threat of diabetic foot ulcer using independent agents for various input values and a combination of fuzzy expert systems.The proposed model uses a classification system to distinguish between each fuzzy framework and its parameters.Based on the severity levels necessary prevention,treatment,and medication are recommended.Combining the results of all the fuzzy frameworks derived from its constituent parameters,a risk-specific medication is recommended.The work also has higher accuracy when compared to other related models.
基金supported by the Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by the Ministry of Education(2019R1A6C1010042,2021R1A6C103A427)the financial support from the National Research Foundation of Korea(NRF)(2022R1A2C2010686,2022R1A4A3033528,2021R1I1A1A01060380,2021R1C1C2010726,2019H1D3A1A01071209)。
文摘The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.
文摘Background: Homocysteine (tHcy) has emerged as a new risk factor for cardiovascular diseases (CVD) The Methylenetetrahydrofolate reductase (MTHFR) polymorphisms are seen to give rise to high levels of tHcy which can be a causative factor in the progression of CVD due to its thrombogenic effect. Serum cardiac biomarkers help in the diagnosis, prognosis, or surveillance of CVD. The present study evaluated the association of the two MTHFR mutations, rs1801133 and rs1801131 with 16 well-established serum cardiac markers. Additionally, the influence of age and gender on the association of the two MTHFR polymorphisms with serum cardiac marker levels was also investigated. Methods: The study was carried out on 1295 individuals who visited Vibrant America Clinical Lab for regular or suspected CVD check-ups. The serological markers and genomic variant analysis were carried out as per the standard laboratory protocol under CLIA. The association between serological markers and the rs1801133 and rs1801131 genetic variants with respect to age and gender was evaluated using a one-way ANNOVA test. Results: No significant association was observed in tHcy levels with respect to gender, however, plasma total tHcy levels were higher in males than females. tHcy levels increased with increasing age in the wild and heterozygous genotypes for the mutations, rs1801133 and rs1801131. Additionally, the serum cardiac markers, High Density Lipoprotein (HDL), Low Density Lipoprotein (LDL), Cholesterol (CHOL), Apolipoprotein A (APOA), Apolipoprotein B (APOB), N-terminal (NT)-pro hormone BNP (BNPNT), LDL calculated (LDLCAL), Small Density Low Density Lipoprotein (SDLDL), APOBAR, Oxidised Low Density Lipoprotein (OXLDL), Lipoprotein (A) (LPA), Triglycerides (TRIG), and Lipoprotein-Associated Phospholipase (Lp-PLA2) Test (PLAC) showed significant associations with respect to gender and age for rs1801133 and rs1801131 (P Conclusions: The present study reports the association of tHcy, HDL, LDL, CHOL, APOA, APOB, BNPNT, LDLCAL, SDLDL, APOBAR, OXLDL
文摘Thyroid metabolism is orchestrated by the action of various minerals and trace elements including iron, iodine, selenium, and zinc. Iron deficiency, specifically deficiency in serum ferritin levels, is one of the common causes of thyroid dysfunction. Our objective was to evaluate the relationship between serum ferritin levels and circulating thyroid hormones. For this, a retrospective analysis was performed on 16,512 individuals who tested for serum levels of ferritin and thyroid profile at Vibrant America Clinical Laboratories. Subjects were stratified based on the serum levels of ferritin. Age (p −0.03232, p < 0.0001). Analysis of Linear association by Pearson’s correlation exhibited a considerable correlation between varying serum ferritin levels with all tested thyroid hormones. The study concludes that serum ferritin levels were associated with thyroid hormone synthesis and metabolism in individuals with optimal levels of circulating ferritin.
文摘Biomarkers are early predictors of various disorders, circulating level of C-reactive protein is a sensitive biomarker of systemic inflammation and may also be associated with the development of diabetic, hepatic, and cardiovascular diseases. In the present study, we aimed to investigate the association between circulating levels of high sensitive C-reactive protein (hs-CRP) and various biomarkers for hepatic, diabetic, and cardiovascular health. The retrospective analysis included 438 individuals who were tested for these panels simultaneously at Vibrant America Clinical Laboratory. The study population included free-living individuals without any preexisting clinical conditions. Among the cardiovascular markers, a positive correlation and significant association was found between high levels of hs-CRP and serum levels of triglycerides (r = 0.0964, p −0.1423, p −0.1216, p < 0.0105) with circulating levels of hs-CRP. Among all the diabetic markers, glucose (r = 0.1547, p < 0.0011) and glycated serum protein (r = 0.1725, p < 0.0003) were positively correlated with circulating hs-CRP. In the hepatic panel, AST, a transaminase that plays a vital role in amino acid metabolism, was found to have a strong positive correlation with hs-CRP (r = 0.2139, p < 0.0001). In conclusion, the results clearly show the association of hs-CRP with diabetic, hepatic, and cardiovascular risk factors indicating its central value as a key marker for several lifestyle-associated disorders.
文摘Thymoquinone(TQ), an active component derived from the medial plant Nigella sativa, has been used for medical purposes for more than 2 000 years. Recent studies have reported that TQ blocked angiogenesis in animal model and reduced migration, adhesion, and invasion of glioblastoma cells. We have recently shown that TQ could exhibit a potent cytotoxic effect and induce apoptosis in mouse neuroblastoma(Neuro-2a) cells. In the present study, TQ treatment markedly decreased the adhesion and migration of Neuro-2a cells. TQ down-regulated MMP-2 and MMP-9 protein expression and m RNA levels and their activities. Furthermore, TQ significantly down-regulated the protein expression of transcription factor NF-κB(p65) but not significantly altered the expression of N-Myc. Taken together, our data indicated that TQ's inhibitory effect on the migration of Neuro-2a cells was mediated through the suppression of MMP-2 and MMP-9 expression, suggesting that TQ treatment can be a promising therapeutic strategy for human malignant neuroblastoma.
基金National Research Foundation of Korea,Grant/Award Numbers:2019H1D3A1A01071209,2021R1I1A1A01060380,2022R1A2C2010686,2022R1A4A3033528Korea Basic Science Institute,Grant/Award Numbers:2019R1A6C1010042,2021R1A6C103A427。
文摘We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed laser ablation of Co,Fe,Ti,and Mo metals in acetone.The interaction between carbon s-p-orbitals and metal d-orbitals causes a redistribution of valence structure through charge transfer,leading to the formation of surface defects as observed by X-ray photoelectron spectroscopy.These defects influence the evolved TMCs,making them effective for hydrogen and oxygen evolution reactions(HER and OER)in an alkaline medium.Co_(3)C with more oxygen affinity promoted CoO(OH)intermediates,and the electrochemical surface oxidation to Co_(3)O_(4)was captured via in situ/operando electrochemical Raman probes,increasing the number of active sites for OER activity.MoC with more d-vacancies exhibits strong hydrogen binding,promoting HER kinetics,whereas Fe_(3)C and TiC with more defect states to trap charge carriers may hinder both OER and HER activities.The results show that the assembled membrane-less electrolyzer with Co_(3)C∥Co_(3)C and MoC∥MoC electrodes requires~2.01 and 1.99 V,respectively,to deliver a 10 mA cm−2 with excellent electrochemical and structural stability.In addition,the ascertained pulsed laser synthesis mechanism and unit-cell packing relations will open up sustainable pathways for obtaining highly stable electrocatalysts for electrolyzers.
基金Evonik Industries and Natural Science and Engineering Research Council
文摘Two 21 d-experiments were conducted to determine the optimum standardized ileal digestible(SID)threonine:lysine ratio(Thr:Lys) for weaned piglets reared under clean(Exp. 1) or unclean(Exp. 2) sanitary conditions and fed antibiotic-free diets. In each experiment, 90 mixed-sex pigs(Duroc × [Yorkshire × Landrace]; initial BW 7.2 ± 0.3 kg) were randomly assigned to 5 dietary treatments each with 6 replicates(3 pigs per pen). The dietary treatments were 5 graded levels of SID Thr:Lys(55,59, 63, 67 and 71%). Diets were corn-wheat-soybean meal-based with a constant SID Lys of 1.18% that was set to be second limiting amino acid. In Exp. 1 and Exp. 2, plasma-free Thr increased(P = 0.05) with increasing dietary SID Thr:Lys. In Exp. 1, the SID Thr:Lys for gain-to-feed ratio(G:F) was optimized at 65%.In Exp. 2, the estimated optimal SID Thr:Lys for overall G:F was 66.5%. In conclusion, an average optimal SID Thr:Lys of 65 and 66.5% could be used to optimize feed efficiency for weaned pigs under clean and unclean sanitary conditions, respectively.
基金supported by Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by the Ministry of Education(Nos.2019R1A6C1010042 and 2021R1A6C103A427)the financial support from National Research Foundation of Korea(NRF),(2022R1A2C2010686,2022R1A4A3033528,2019H1D3A1A01071209,and 2021R1I1A1A01060380)
文摘Here,furfural oxidation was performed to replace the kinetically sluggish O_(2)evolution reaction(OER).Pt-Co_(3)O_(4)nanospheres were developed via pulsed laser ablation in liquid(PLAL)in a single step for the paired electrocatalysis of an H_(2)evolution reaction(HER)and furfural oxidation reaction(FOR).The FOR afforded a high furfural conversion(44.2%)with a major product of 2-furoic acid after a 2-h electrolysis at 1.55 V versus reversible hydrogen electrode in a 1.0-M KOH/50-mM furfural electrolyte.The Pt-Co_(3)O_(4)electrode exhibited a small overpotential of 290 mV at 10 mA cm^(-2).As an anode and cathode in an electrolyzer system,the Pt-Co_(3)O_(4)electrocatalyst required only a small applied cell voltage of~1.83 V to deliver 10 mA cm^(-2),compared with that of the pure water electrolyzer(OER||HER,~1.99 V).This study simultaneously realized the integrated production of energy-saving H_(2)fuel at the cathode and 2-furoic acid at the anode.
基金supported by Korea Basic Science Institute (National research Facilities and Equipment Center)grant funded by the Ministry of Education. (Nos.2019R1A6C1010042,2021R1A6C103A427)support from National Research Foundation of Korea (NRF), (Nos.2022R1A2C2010686,2022R1A4A3033528,2020R1I1A1A01065748,2021R1I1A1A01060380).
文摘Optimizing the structure and components is a prevalent strategy for increasing electrocatalytic energy-saving H 2 fuel production.One of the sustainable and efficient techniques is electrocatalytic water split-ting for H 2 generation,but it is still restricted by the kinetically sluggish OER.Due to the lower standard oxidation potential of−0.33 V,replacing the OER with anodic hydrazine oxidation reaction(HzOR)is an effective way to extensively reduce the use of electricity in water electrolysis.Through alloying,the semiconductor and adsorption characteristics of Cu,interlaced by Pd 2+solution on the Pd surface by pulsed laser ablation(PLA)in methanol,are selectively altered to maximize cathodic HER and anodic HzOR performance.The optimal Cu1Pd3/C ratio demonstrates outstanding HER performance with a low overpotential of 0.315 V at 10 mA cm^(−2),as well as an ultralow overpotential of 0.560 V for HzOR in 0.5 M N_(2) H_(4)/1.0 M KOH.Furthermore,the constructed HzOR-assisted electrolyzer cell with Cu1Pd3/C||Cu1Pd3/C as anode and cathode exhibits a cell voltage of 0.505 V at 10 mA cm^(−2) with exceptional en-durance over 5 h.The current study advances competent CuPd alloys as multifunctional electrocatalysts for H 2 fuel production using a HzOR-assisted energy-efficient electrolyzer.
文摘A356 is a high strength aluminium-silicon cast alloy used in food,chemical,marine,electrical and automotive industries.Fusion welding of this cast alloy will lead to many problems such as porosity,micro-fissuring,and hot cracking.However,friction stir welding(FSW) can be used to weld this cast alloy without above mentioned defects.An attempt was made to study the effect of FSW process parameters on the tensile strength of cast A356 aluminium alloy.Joints were made using different combinations of tool rotation speed,welding speed and axial force.The quality of weld zone was analyzed by macrostructure and microstructure analyses.Tensile strengths of the joints were evaluated and correlated with the weld zone hardness and microstructure.The joint fabricated using a rotational speed of 1000 r/min,a welding speed of 75 mm/min and an axial force of 5 kN showed a higher tensile strength compared to the other joints.
文摘Waste production rises in tandem with population growth and increased utilization.The indecorous disposal of waste paves the way for huge disaster named as climate change.The National Environment Agency(NEA)of Singapore oversees the sustainable management of waste across the country.The three main contributors to the solid waste of Singapore are paper and cardboard(P&C),plastic,and food scraps.Besides,they have a negligible rate of recycling.In this study,Machine Learning techniques were utilized to forecast the amount of garbage also known as waste audits.The waste audit would aid the authorities to plan their waste infrastructure.The applied models were k-nearest neighbors,Support Vector Regressor,ExtraTrees,CatBoost,and XGBoost.The XGBoost model with its default parameters performed better with a lower Mean Absolute Percentage Error(MAPE)of 8.3093(P&C waste),8.3217(plastic waste),and 6.9495(food waste).However,Grid Search Optimization(GSO)was used to enhance the parameters of the XGBoost model,increasing its effectiveness.Therefore,the optimized XGBoost algorithm performs the best for P&C,plastics,and food waste with MAPE of 4.9349,6.7967,and 5.9626,respectively.The proposed GSO-XGBoost model yields better results than the other employed models in predicting municipal solid waste.
文摘This paper reports the effect of friction stir welding (FSW) process parameters on tensile strength of cast LM6 aluminium alloy. Joints were made by using different combinations of tool rotation speed, welding speed and axial force each at four levels. The quality of weld zone was investigated using macrostructure and microstructure analysis. Tensile strength of the joints were evaluated and correlated with the weld zone hardness and microstructure. The joint fabricated using a rotational speed of 900 r/min, a welding speed of 75 mm/min and an axial force of 3 kN showed superior tensile strength compared with other joints. The tensile strength and microhardness of the welded joints for the optimum conditions were 166 MPa and 64.8 Hv respectively.
基金approved by the University of Calgary Conjoint Research Ethics Board (HREBA. CC-14-0170).
文摘Background: The management of patients with synchronous colorectal liver metastases (sCRLM) has evolved significantly (improved chemotherapy, hepatic surgery advancements, colonic stenting, consultation synergies). We sought to better understand surgeon viewpoints on optimal referral patterns and the delivery of simultaneous resections. Methods: A 40 question on-line survey was offered to members of the Canadian surgical community. Statistical analysis was descriptive. Results: A total of 52 surgeons responded. Most colorectal surgeons (CRS) had access to and a good working relationship with regional hepatobiliary (HPB) surgeons (86%) and medical oncologists (100%). The majority (92%) believed there was a role for simultaneous resection of sCRLM, with 69% having first hand experience. Many CRS (62%) discussed all cases of known hepatic metastases with HPB prior to any resection. When a lesion was asymptomatic/minimally symptomatic, most CRS (92%) discussed them with medical oncology/HPB prior to resection (8%). Bilobar metastases (58%), patient comorbidities (35%), portal lymphadenopathy (35%), and patient age (15%) restricted CRS from obtaining HPB consultations. Many CRS (46%) did not believe that resecting hepatic metastases prior to the primary lesion might be beneficial. Most CRS (60%) reported they could not accurately predict hepatic resectability, with only 27%familiarity with evidence-based guidelines. Despite working in smaller hospitals with less access to HPB and less experience with simultaneous resections, non-CR general surgeons more commonly supported a 'liver-first' approach. Conclusions: There was general agreement between CRS and general surgeons on numerous topics, but additional education is required with regard to HPB surgical capabilities and to provide truly individualized patient-centered care.
基金fund received from Department of Science and Technology,Govt.of India,grant no.DST/CERI/MI/SG/2017/080(AU)(G).
文摘Nowadays,wireless sensor networks play a vital role in our day to day life.Wireless communication is preferred for many sensing applications due its convenience,flexibility and effectiveness.The sensors to sense the environmental factor are versatile and send sensed data to central station wirelessly.The cluster based protocols are provided an optimal solution for enhancing the lifetime of the sensor networks.In this paper,modified K-means++algorithm is used to form the cluster and cluster head in an efficient way and the Advanced Energy-Efficient Cluster head selection Algorithm(AEECA)is used to calculate the weighted fac-tor of the transmission path and effective data collection using gateway node.The experimental results show the proposed algorithm outperforms the existing routing algorithms.
基金the Basic Science Research Program of the National Research Foundation(NRF)of Korea(Nos.2019R1A6A1A11053838,2022R1A4A3033528,and 2022R1F1A1063285)Korea Agency for Infrastructure Technology Advancement(KAIA)funded by the Ministry of Land,Infrastructure,and Transport(No.21CTAP-C163795-01)Prof.M.Y.Choi acknowledges the Korea Basic Science Institute(National Research Facilities and Equipment Center)grant funded by the Ministry of Education(Nos.2019R1A6C1010042 and 2021R1A6C103A427).
文摘The single-pot production of Pd@Pt core-shell structures is a promising approach as it offers large surface area,catalytic capability,and stability.In this work,we established a single-pot process to produce Pd@Pt core-shell nanodendrites with tunable composition,shape and size for optimal electrochemical activity.Pd@Pt nanodendrites with diverse compositions were synthesized by tuning the ratios of Pd and Pt sources in an aqueous environment using cetyltrimethylammonium chloride,which functioned as both the surfactant and the reducing agent at an elevated temperature(90°C).The synthesized Pd5@Pt5 nanodendrites showed exceptional electrochemical action toward the methanol oxidation reaction related with another compositional Pd@Pt nanodendrites and conventional Pt/C electrocatalysts.In addition,Pd5@Pt5 nanodendrites exhibited good CO tolerance owing to their surface features and the synergistic effect among Pt and Pd.Meanwhile,nanodendrites with a Pt-rich surface provided exceptional catalytic active sites.Compared with the conventional Pt/C electrocatalyst,the anodic peak current obtained by Pd5@Pt5 nanodendrites was 3.74 and 2.18 times higher in relations of mass and electrochemical active surface area-normalized current density,respectively.This approach offers an attractive strategy to design electrocatalysts with unique structures and outstanding catalytic performance and stability for electrochemical energy conversion.
基金supported by the Korea Basic Science Institute (National research Facilities and Equipment Center) grant funded by the Ministry of Education. (2019R1A6C1010042, 2021R1A6C103A427)the financial support from the National Research Foundation of Korea (NRF), (2022R1A2C2010686, 2022R1A4A3033528, 2021R1I1A1A01060380, 2019H1D3A1A01071209)。
文摘Here,CuO nanorods fabricated via pulsed laser ablation in liquids were decorated with Ir,Pd,and Ru NPs(loading~7 wt%) through pulsed laser irradiation in the liquids process.The resulting NPs-decorated CuO nanorods were characterized spectroscopically and employed as multifunctional electrocatalysts in OER,HER,and the furfural oxidation reactions(FOR).Ir-CuO nanorods afford the lowest overpotential of~345 mV(HER) and 414 mV(OER) at 10 mA cm^(-2),provide the highest 2-furoic acid yield(~10.85 mM) with 64.9% selectivity,and the best Faradaic efficiency~72.7% in 2 h of FOR at 1.58 V(vs.RHE).In situ electrochemical-Raman analysis of the Ir-CuO detects the formation of the crucial intermediates,such as Cu(Ⅲ)-oxide,Cu(OH)_(2),and Ir_x(OH)_y,on the electrode-electrolyte surface,which act as a promoter for HER and OER.The Ir-CuO ‖ Ir-CuO in a coupled HER and FOR-electrolyzer operates at~200 mV lower voltage,compared with the conventional electrolyzer and embodies the dual advantage of energy-saving H_(2) and 2-furoic acid production.