A c. 300-year oxygen and carbon isotope record derived from fine-grained and ostracod carbonate from Qinghai Lake testifies to dramatic interannual tointerdecadal limnological change. Fine-grained carbonates, which ar...A c. 300-year oxygen and carbon isotope record derived from fine-grained and ostracod carbonate from Qinghai Lake testifies to dramatic interannual tointerdecadal limnological change. Fine-grained carbonates, which are mainly authigenic, are likely to have formed in the epilimnion of the lake and their isotopic composition reflects the summer temperature and, more importantly, the isotopic composition of the near-surface waters, which is mainly a function of evaporative concentration. Ostracod shells are secreted in the benthos of the lake, and their isotopic composition reflects summer bottom-water conditions, together with fractionation effects, which may differ between species. Differences betweencontemporaneous values from authigenic carbonates and ostracod shells may provide an indication of stratification within the lake and variations in effective precipitation over the northeast part of the Tibetan Plateau over the past 300 years. A period of moderate evaporative concentration, from about 300 to 100 yr BP, was interrupted by a marked wet phase from ~100 to 40 yr BP, which was in turnfollowed by a return to drier conditions in the most recent part of the record.The increase in ? 18O values in the latter part of the record accords well withinstrumental records of lake-level lowering and salinity increase since about 1955 AD.展开更多
WS9326A is a peptide antibiotic containing a highly unusual N-methyl-E-2-3-dehydrotyrosine(NMet-Dht)residue that is incorporated during peptide assembly on a non-ribosomal peptide synthetase(NRPS).The cytochrome P450 ...WS9326A is a peptide antibiotic containing a highly unusual N-methyl-E-2-3-dehydrotyrosine(NMet-Dht)residue that is incorporated during peptide assembly on a non-ribosomal peptide synthetase(NRPS).The cytochrome P450 encoded by sas16(P450Sas)has been shown to be essential for the formation of the alkene moiety in NMet-Dht,but the timing and mechanism of the P450Sas-mediatedα,β-dehydrogenation of Dht remained unclear.Here,we show that the substrate of P450Sas is the NRPS-associated peptidyl carrier protein(PCP)-bound dipeptide intermediate(Z)-2-pent-1′-enyl-cinnamoyl-Thr-N-Me-Tyr.We demonstrate that P450Sas-mediated incorporation of the double bond follows N-methylation of the Tyr by the N-methyl transferase domain found within the NRPS,and further that P450Sas appears to be specific for substrates containing the(Z)-2-pent-1’-enyl-cinnamoyl group.A crystal structure of P450Sas reveals differences between P450Sas and other P450s involved in the modification of NRPS-associated substrates,including the substitution of the canonical active site alcohol residue with a phenylalanine(F250),which in turn is critical to P450Sas activity and WS9326A biosynthesis.Together,our results suggest that P450Sas catalyses the direct dehydrogenation of the NRPS-bound dipeptide substrate,thus expanding the repertoire of P450 enzymes that can be used to produce biologically active peptides.展开更多
The design concepts, modelling and implementation of various fibre optic sensor protection systems for development in concrete structures were investigated. Design concepts and on-site requirements for surface-mounted...The design concepts, modelling and implementation of various fibre optic sensor protection systems for development in concrete structures were investigated. Design concepts and on-site requirements for surface-mounted and embedded optical fibre sensor in concrete were addressed. Finite element (FE) modelling of selected sensor protection systems in strain-transfer efficiency from the structure to the sensing region was also studied. And experimental validation of specified sensor protection system was reported. Results obtained indicate that the protection system for the sensors performs adequately in concrete environment and there is very good correlation between results obtained by the protected fibre optic sensors and conventional electrical resistance strain gauges.展开更多
基金partly supported by the National Natural Science Foundation of China(Grant No.40125001)the MRes fund from University College London.
文摘A c. 300-year oxygen and carbon isotope record derived from fine-grained and ostracod carbonate from Qinghai Lake testifies to dramatic interannual tointerdecadal limnological change. Fine-grained carbonates, which are mainly authigenic, are likely to have formed in the epilimnion of the lake and their isotopic composition reflects the summer temperature and, more importantly, the isotopic composition of the near-surface waters, which is mainly a function of evaporative concentration. Ostracod shells are secreted in the benthos of the lake, and their isotopic composition reflects summer bottom-water conditions, together with fractionation effects, which may differ between species. Differences betweencontemporaneous values from authigenic carbonates and ostracod shells may provide an indication of stratification within the lake and variations in effective precipitation over the northeast part of the Tibetan Plateau over the past 300 years. A period of moderate evaporative concentration, from about 300 to 100 yr BP, was interrupted by a marked wet phase from ~100 to 40 yr BP, which was in turnfollowed by a return to drier conditions in the most recent part of the record.The increase in ? 18O values in the latter part of the record accords well withinstrumental records of lake-level lowering and salinity increase since about 1955 AD.
基金supported by the BBSRC(MIBTP studentship to Daniel J.Leng)the Monash Warwick Alliance(Seed Fund Award to Manuela Tosin and Max J.Cryle)+6 种基金the University of Warwick(Career Support Award to Manuela Tosin)Monash University,EMBL Australia,the Australian Research Council(Discovery Project DP210101752 to Max J.Cryle)the National Health and Medical Research Council(APP1140619 to Max J.Cryle)the Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science(CE200100012)funded by the Australian Governmentfunded by the National Natural Science Foundation of China(82104044 to Songya Zhang)the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project(TSBICIP-PTJS-003-07)。
文摘WS9326A is a peptide antibiotic containing a highly unusual N-methyl-E-2-3-dehydrotyrosine(NMet-Dht)residue that is incorporated during peptide assembly on a non-ribosomal peptide synthetase(NRPS).The cytochrome P450 encoded by sas16(P450Sas)has been shown to be essential for the formation of the alkene moiety in NMet-Dht,but the timing and mechanism of the P450Sas-mediatedα,β-dehydrogenation of Dht remained unclear.Here,we show that the substrate of P450Sas is the NRPS-associated peptidyl carrier protein(PCP)-bound dipeptide intermediate(Z)-2-pent-1′-enyl-cinnamoyl-Thr-N-Me-Tyr.We demonstrate that P450Sas-mediated incorporation of the double bond follows N-methylation of the Tyr by the N-methyl transferase domain found within the NRPS,and further that P450Sas appears to be specific for substrates containing the(Z)-2-pent-1’-enyl-cinnamoyl group.A crystal structure of P450Sas reveals differences between P450Sas and other P450s involved in the modification of NRPS-associated substrates,including the substitution of the canonical active site alcohol residue with a phenylalanine(F250),which in turn is critical to P450Sas activity and WS9326A biosynthesis.Together,our results suggest that P450Sas catalyses the direct dehydrogenation of the NRPS-bound dipeptide substrate,thus expanding the repertoire of P450 enzymes that can be used to produce biologically active peptides.
文摘The design concepts, modelling and implementation of various fibre optic sensor protection systems for development in concrete structures were investigated. Design concepts and on-site requirements for surface-mounted and embedded optical fibre sensor in concrete were addressed. Finite element (FE) modelling of selected sensor protection systems in strain-transfer efficiency from the structure to the sensing region was also studied. And experimental validation of specified sensor protection system was reported. Results obtained indicate that the protection system for the sensors performs adequately in concrete environment and there is very good correlation between results obtained by the protected fibre optic sensors and conventional electrical resistance strain gauges.