In a variety of modern applications there arises a need to tessellate the domain into representative regions,called Voronoi cells.A particular type of such tessellations,called centroidal Voronoi tessellations or CVTs...In a variety of modern applications there arises a need to tessellate the domain into representative regions,called Voronoi cells.A particular type of such tessellations,called centroidal Voronoi tessellations or CVTs,are in big demand due to their optimality properties important for many applications.The availability of fast and reliable algorithms for their construction is crucial for their successful use in practical settings.This paper introduces a new multigrid algorithm for constructing CVTs that is based on the MG/Opt algorithm that was originally designed to solve large nonlinear optimization problems.Uniform convergence of the new method and its speedup comparing to existing techniques are demonstrated for linear and nonlinear densities for several 1d and 2d problems,and O(k)complexity estimation is provided for a problem with k generators.展开更多
Efficient data visualization techniques are critical for many scientific applications. Centroidal Voronoi tessellation(CVT) based algorithms offer a convenient vehicle for performing image analysis,segmentation and co...Efficient data visualization techniques are critical for many scientific applications. Centroidal Voronoi tessellation(CVT) based algorithms offer a convenient vehicle for performing image analysis,segmentation and compression while allowing to optimize retained image quality with respect to a given metric.In experimental science with data counts following Poisson distributions,several CVT-based data tessellation algorithms have been recently developed.Although they surpass their predecessors in robustness and quality of reconstructed data,time consumption remains to be an issue due to heavy utilization of the slowly converging Lloyd iteration.This paper discusses one possible approach to accelerating data visualization algorithms.It relies on a multidimensional generalization of the optimization based multilevel algorithm for the numerical computation of the CVTs introduced in[1],where a rigorous proof of its uniform convergence has been presented in 1-dimensional setting.The multidimensional implementation employs barycentric coordinate based interpolation and maximal independent set coarsening procedures.It is shown that when coupled with bin accretion algorithm accounting for the discrete nature of the data,the algorithm outperforms Lloyd-based schemes and preserves uniform convergence with respect to the problem size.Although numerical demonstrations provided are limited to spectroscopy data analysis,the method has a context-independent setup and can potentially deliver significant speedup to other scientific and engineering applications.展开更多
基金supported by the U.S.Department of Energy under Award DE-SC-0001691support from the ORAU Ralph E.Powe Junior Faculty Enhancement Award and from the National Science Foundation under the grants DMS-1056821 and DMS-0915013.
文摘In a variety of modern applications there arises a need to tessellate the domain into representative regions,called Voronoi cells.A particular type of such tessellations,called centroidal Voronoi tessellations or CVTs,are in big demand due to their optimality properties important for many applications.The availability of fast and reliable algorithms for their construction is crucial for their successful use in practical settings.This paper introduces a new multigrid algorithm for constructing CVTs that is based on the MG/Opt algorithm that was originally designed to solve large nonlinear optimization problems.Uniform convergence of the new method and its speedup comparing to existing techniques are demonstrated for linear and nonlinear densities for several 1d and 2d problems,and O(k)complexity estimation is provided for a problem with k generators.
基金supported by the grants DMS 0405343 and DMR 0520425.
文摘Efficient data visualization techniques are critical for many scientific applications. Centroidal Voronoi tessellation(CVT) based algorithms offer a convenient vehicle for performing image analysis,segmentation and compression while allowing to optimize retained image quality with respect to a given metric.In experimental science with data counts following Poisson distributions,several CVT-based data tessellation algorithms have been recently developed.Although they surpass their predecessors in robustness and quality of reconstructed data,time consumption remains to be an issue due to heavy utilization of the slowly converging Lloyd iteration.This paper discusses one possible approach to accelerating data visualization algorithms.It relies on a multidimensional generalization of the optimization based multilevel algorithm for the numerical computation of the CVTs introduced in[1],where a rigorous proof of its uniform convergence has been presented in 1-dimensional setting.The multidimensional implementation employs barycentric coordinate based interpolation and maximal independent set coarsening procedures.It is shown that when coupled with bin accretion algorithm accounting for the discrete nature of the data,the algorithm outperforms Lloyd-based schemes and preserves uniform convergence with respect to the problem size.Although numerical demonstrations provided are limited to spectroscopy data analysis,the method has a context-independent setup and can potentially deliver significant speedup to other scientific and engineering applications.