A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the in...A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the input pump power from the threshold of 91 mW to the maximum available power of 136 mW, a pulse train with a maximum repetition rate of 57.44 kHz, minimum pulse width of 3.76 us, maximum average output power of7.99 mW, maximum pulse energy of 0.1391 uJ, and maximum peak power of 36.99 mW are obtained. The signalto-noise ratio of the spectrum is measured to be around 75 dB. This CdSe based SA is simple, robust, and reliable,and thus suitable for making a portable pulse laser source.展开更多
Nanosecond pulse generation is demonstrated in a mode-locked erbium-doped fiber laser(EDFL) utilizing a samarium oxide(Sm2O3) film. The Sm2O3 film exhibits a modulation depth of 33%, which is suitable for modelocking ...Nanosecond pulse generation is demonstrated in a mode-locked erbium-doped fiber laser(EDFL) utilizing a samarium oxide(Sm2O3) film. The Sm2O3 film exhibits a modulation depth of 33%, which is suitable for modelocking operation. The passively pulsed EDFL operates stably at 1569.8 nm within a pumping power from 109 to 146 m W. The train of generated output pulses has a pulse width of 356 nm repeated at a fundamental frequency of 0.97 MHz. The average output power of 3.91 m W is obtained at a pump power of 146 m W, corresponding to 4.0 nJ pulse energy. The experimental result indicates that the proposed Sm2O3 saturable absorber is viable for the construction of a flexible and reliably stable mode-locked pulsed fiber laser operating in the 1.5 m region.展开更多
We demonstrate the generation of passive mode-locked double-clad ytterbium-doped fiber laser operating in a 1-micron region. We prepare the saturable absorber from commercial crystal of molybdenum disulphide (MoS2 )...We demonstrate the generation of passive mode-locked double-clad ytterbium-doped fiber laser operating in a 1-micron region. We prepare the saturable absorber from commercial crystal of molybdenum disulphide (MoS2 ). Without chemical procedure, the MoS2 is mechanically exfoliated by using a clear scotch tape. A few layers of MoS2 flakes are obtained on the tape. Then, a piece of 1× 1 mm tape containing MoS2 thin flakes is inserted between two fiber ferrules and is integrated in the ring cavity. Stable mode-locking operation is attained at 1090nm with a repetition rate of l3.2 MHz. Our mode-locked laser has a maximum output power of 2OmW with 1.48nJ pulse energy. These results validate that the MoS2 has a broad operating wavelength which covers the 1-micron region, and it is also able to work in a high-power cavity.展开更多
This work reports on the use of the holmium oxide (Ho2O3) polymer film as a saturable absorber (SA) for generating stable Q-switching pulses operating in a 2μm region in a thulium-doped fiber laser cavity. The SA...This work reports on the use of the holmium oxide (Ho2O3) polymer film as a saturable absorber (SA) for generating stable Q-switching pulses operating in a 2μm region in a thulium-doped fiber laser cavity. The SA is prepared by diluting a commercial Ho3O2 powder and then mixing it with polyvinyI alcohol (PVA) solution to form a Ho2O3-PVA film. A tiny part of the film about 1mm×1 mm in size is sandwiched between two fiber ferrules with the help of index matching gel. When incorporated in a laser cavity driven by a 1552-nm pump, stable Q-switching pulses are observed at 1955nm within the pump power range of 363 491 roW. As the pmnp power increases within this range, the repetition rate rises from 26 kHz to 39 kHz, as the pulse width drops from 4.22μs to 2.57μs. The laser operates with a signal-to-noise ratio of 47dB, and the maximum output power and the pulse energy obtained are 2.67mW and 69ng, respectively. Our results successfully demonstrate that the Ho2O3 film can be used as a passive SA to generate a 2μm pulse laser.展开更多
文摘A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the input pump power from the threshold of 91 mW to the maximum available power of 136 mW, a pulse train with a maximum repetition rate of 57.44 kHz, minimum pulse width of 3.76 us, maximum average output power of7.99 mW, maximum pulse energy of 0.1391 uJ, and maximum peak power of 36.99 mW are obtained. The signalto-noise ratio of the spectrum is measured to be around 75 dB. This CdSe based SA is simple, robust, and reliable,and thus suitable for making a portable pulse laser source.
基金Supported by the INTI Research Grant Scheme 2018 under Grant No INTI-FITS-01-06-2018
文摘Nanosecond pulse generation is demonstrated in a mode-locked erbium-doped fiber laser(EDFL) utilizing a samarium oxide(Sm2O3) film. The Sm2O3 film exhibits a modulation depth of 33%, which is suitable for modelocking operation. The passively pulsed EDFL operates stably at 1569.8 nm within a pumping power from 109 to 146 m W. The train of generated output pulses has a pulse width of 356 nm repeated at a fundamental frequency of 0.97 MHz. The average output power of 3.91 m W is obtained at a pump power of 146 m W, corresponding to 4.0 nJ pulse energy. The experimental result indicates that the proposed Sm2O3 saturable absorber is viable for the construction of a flexible and reliably stable mode-locked pulsed fiber laser operating in the 1.5 m region.
基金Supported by the PPP Grant Scheme of University of Malaya under Grant No PG098-2014B
文摘We demonstrate the generation of passive mode-locked double-clad ytterbium-doped fiber laser operating in a 1-micron region. We prepare the saturable absorber from commercial crystal of molybdenum disulphide (MoS2 ). Without chemical procedure, the MoS2 is mechanically exfoliated by using a clear scotch tape. A few layers of MoS2 flakes are obtained on the tape. Then, a piece of 1× 1 mm tape containing MoS2 thin flakes is inserted between two fiber ferrules and is integrated in the ring cavity. Stable mode-locking operation is attained at 1090nm with a repetition rate of l3.2 MHz. Our mode-locked laser has a maximum output power of 2OmW with 1.48nJ pulse energy. These results validate that the MoS2 has a broad operating wavelength which covers the 1-micron region, and it is also able to work in a high-power cavity.
文摘This work reports on the use of the holmium oxide (Ho2O3) polymer film as a saturable absorber (SA) for generating stable Q-switching pulses operating in a 2μm region in a thulium-doped fiber laser cavity. The SA is prepared by diluting a commercial Ho3O2 powder and then mixing it with polyvinyI alcohol (PVA) solution to form a Ho2O3-PVA film. A tiny part of the film about 1mm×1 mm in size is sandwiched between two fiber ferrules with the help of index matching gel. When incorporated in a laser cavity driven by a 1552-nm pump, stable Q-switching pulses are observed at 1955nm within the pump power range of 363 491 roW. As the pmnp power increases within this range, the repetition rate rises from 26 kHz to 39 kHz, as the pulse width drops from 4.22μs to 2.57μs. The laser operates with a signal-to-noise ratio of 47dB, and the maximum output power and the pulse energy obtained are 2.67mW and 69ng, respectively. Our results successfully demonstrate that the Ho2O3 film can be used as a passive SA to generate a 2μm pulse laser.