In this study, the effects of magnetic field and nanoparticle on the Jeffery- Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes eq...In this study, the effects of magnetic field and nanoparticle on the Jeffery- Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes equation of fluid mechanics and Maxwell's electromagnetism governing equations are reduced to nonlinear ordinary differential equations to model the problem. The obtained results are well agreed with that of the Runge-Kutta method. The present plots confirm that the method has high accuracy for different a, Ha, and Re numbers. The flow field inside the divergent channel is studied for various values of Hartmann :number and angle of channel. The effect of nanoparticle volume fraction in the absence of magnetic field is investigated.展开更多
The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanopa...The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanoparticles: TiO2, Ag, Cu, and A1203. The Brinkman and Maxwell-Garnetts models are used to simulate the viscosity and the effective thermal conductivity of nanofluids, respectively. Results from the performed numerical analysis show good agreement with those obtained from other numerical meth- ods. A variety of the Rayleigh number, the nanoparticle volume fraction, and the aspect ratio are examined. According to the results, choosing copper as the nanoparticle leads to obtaining the highest enhancement for this problem. The results also indicate that the maximum value of enhancement occurs at λ =2.5 when Ra = 106 while at A = 1.5 for other Rayleigh numbers.展开更多
The TiO2-water based nanofluid flow in a channel bounded by two porous plates under an oblique magnetic field and variable thermal conductivity is formulated as a boundary-value problem(BVP). The BVP is analytically s...The TiO2-water based nanofluid flow in a channel bounded by two porous plates under an oblique magnetic field and variable thermal conductivity is formulated as a boundary-value problem(BVP). The BVP is analytically solved with the homotopy analysis method(HAM). The result shows that the concentration of the nanoparticles is independent of the volume fraction of TiO2nanoparticles, the magnetic field intensity, and the angle. It is inversely proportional to the mass diffusivity. The fluid speed decreases whereas the temperature increases when the volume fraction of the TiO2nanoparticles increases. This confirms the fact that the occurrence of the TiO2nanoparticles results in the increase in the thermal transfer rate. The fluid speed decreases and the temperature increases for both the pure water and the nanofluid when the magnetic field intensity and angle increase. The maximum velocity does not exist at the middle of the symmetric channel, which is in contrast to the plane-Poiseuille flow, but it deviates a little bit towards the lower plate, which absorbs the fluid with a very low suction velocity. If this suction velocity is increased, the temperature in the vicinity of the lower plate will be increased.An explicit expression for the friction factor-Reynolds number is then developed. It is shown that the Hartmann number of the nanofluid is smaller than that of pure water,while the Nusselt number of the nanofluid is larger than that of pure water. However,both the parameters increase if the magnetic field intensity increases.展开更多
Microgrid(MG)is a small-scale,self-sufficient power system that accommodates various distributed energy resources(DERs),controllable loads,and future distribution systems.Networked microgrids(NMGs)are clusters of MGs,...Microgrid(MG)is a small-scale,self-sufficient power system that accommodates various distributed energy resources(DERs),controllable loads,and future distribution systems.Networked microgrids(NMGs)are clusters of MGs,which are physically interconnected and functionally coordinated to enhance distribution systems in terms of economics,resilience,and reliability.This paper introduces the architecture and control of NMGs including nanogrid(NG)and MG.To accommodate variable DERs in NMGs,master and distributed control strategies are adopted to manage the high penetration of DERs,where master control focuses on economic operation,while distributed control focuses on reliability and resilience through active power sharing and voltage and frequency regulation.The initial practices of NG,MG,and NMG in the networked Illinois Institute of Technology(IIT)campus microgrid(ICM)and Bronzeville community microgrid(BCM)in the U.S.are presented.The applications of the master and distributed control strategies are illustrated for the networked ICM-BCM to show their benefits to economics,resilience,and reliability.展开更多
Despite modern medicine’s advancements,age-related neurological diseases like Alzheimer’s disease and Parkinson’s disease remain challenging due to high costs,side effects,and limited accessibility.Ayurveda,a tradi...Despite modern medicine’s advancements,age-related neurological diseases like Alzheimer’s disease and Parkinson’s disease remain challenging due to high costs,side effects,and limited accessibility.Ayurveda,a traditional Indian medicine system,offers Kadha tea as a potential herbal option.This review explores Kadha’s components(basil(Ocimum basilicum L.),black pepper(Piper nigrum L.),Cinnamon(Cinnamomum verum J.Presl),ginger(Zingiber officinale Roscoe),and raisin(Vitis vinifera L.))and their interaction with various neurological disorders.Studies suggest Kadha exhibits anti-inflammatory,antioxidant,and antiviral properties,potentially impacting Alzheimer’s disease,Parkinson’s disease,neurotoxicity,neuroinflammation,and brain trauma.By focusing on specific disease mechanisms and Kadha’s intergrade effects,this review aims to elucidate its potential role in managing age-related neurological disorders.展开更多
Magnetic nanofiuid hydrothermal analysis over a plate is studied that includes consideration of thermal radiation. The Runge-Kutta (RK4) method is utilized to get solution of ODEs which are obtained from similarity ...Magnetic nanofiuid hydrothermal analysis over a plate is studied that includes consideration of thermal radiation. The Runge-Kutta (RK4) method is utilized to get solution of ODEs which are obtained from similarity solution. In considering the impacts of Brownian motion, we applied Koo-Kleinstreuer-Li cor- relation to simulate the properties of CuO-water. The influence is discussed of important parameters such as the temperature index, magnetic, radiation, and velocity ratio parameters and volume fraction of nanoparticle on hydrothermal behavior. Results illustrate that the coefficient of skin friction enhances with enhancing magnetic parameter while reduces with enhancing velocity ratio parameter. Also the Nusselt number was found to directly depend on the velocity ratio and temperature index parameters but has an inverse dependence on the magnetic and radiation parameters.展开更多
Free convection of FeaO4-Ethylene glycol nanofluid in existence of Coulomb forces is studied. Effect of thermal radiation is taken into account. Properties of nanofluid are varied with supplied voltage and shape of na...Free convection of FeaO4-Ethylene glycol nanofluid in existence of Coulomb forces is studied. Effect of thermal radiation is taken into account. Properties of nanofluid are varied with supplied voltage and shape of nanoparticles. The bottom wall is considered as positive electrode. Control Volume based Finite Element Method is used to obtain the results, which are the roles of Darcy number (Da), radiation parameter (Rd), Rayleigh number (Ra), nanofluid volume fraction (qS), and supplied voltage (△φ). Results indicate that Nusselt number is an enhancing function of supplied voltage and Darcy number. Maximum values for temperature gradient are occurred for platelet shape nanoparticles.展开更多
Part baking of bread and frozen storage as the new methods have attracted a lot of attention due to an increase in shelf life and the availability of fresh bread at any time.Replacing traditional additives with natura...Part baking of bread and frozen storage as the new methods have attracted a lot of attention due to an increase in shelf life and the availability of fresh bread at any time.Replacing traditional additives with natural gums such as plant gum for producing bread with long shelf life is considered as a major technological challenge in bakery industry.The present study aimed to evaluate the effects of 0,0.3%,and 0.5%concentrations of plant gums including Basil and Balangu,compared to guar gum at 0.4%on the physicochemical properties such as specific volume,extensibility,hardness,and color parameter,as well as sensory properties of part baked frozen bread.The results indicated adding gums to bread decreased in hardness and increased in specific volume,extensibility,color parameter and sensory properties.Based on the comparison between plant gums and guar,Basil and Balangu could improve volume,porosity,and sensory score more than guar against the guar which was more effective on moisture content and firmness of Barbari bread.The best results were obtained in the interaction between Basil and Balangu gums on 0.5%concentration.展开更多
Let k be a positive integer. A Roman k-dominating function on a graph G is a labeling f : V(G) → {0, 1, 2} such that every vertex with label 0 has at least k neighbors with label 2. A set {f1, f2,..., fd} of disti...Let k be a positive integer. A Roman k-dominating function on a graph G is a labeling f : V(G) → {0, 1, 2} such that every vertex with label 0 has at least k neighbors with label 2. A set {f1, f2,..., fd} of distinct Roman k-dominating functions on G with the property that ∑di=1 fi(v) ≤ 2 for each v C V(G), is called a Roman k-dominating family (of functions) on G. The maximum number of functions in a Roman k-dominating family on G is the Roman k-domatic number of G, denoted by dkR(G). Note that the Roman 1-domatic number dlR(G) is the usual Roman domatic number dR(G). In this paper we initiate the study of the Roman k-domatic number in graphs and we present sharp bounds for dkR(G). In addition, we determine the Roman k-domatic number of some graphs. Some of our results extend those given by Sheikholeslami and Volkmann in 2010 for the Roman domatic number.展开更多
In the present article Optimal Homotopy Asymptotic Method(OHAM)is used to obtain the solutions of momentum and heat transfer equations of non-Newtonian fluid flow in an axisymmetric channel with porous wall for turbin...In the present article Optimal Homotopy Asymptotic Method(OHAM)is used to obtain the solutions of momentum and heat transfer equations of non-Newtonian fluid flow in an axisymmetric channel with porous wall for turbine cooling applications.Numerical method is used for validity of this analytical method and excellent agreement is observed between the solutions obtained from OHAM and numerical results.Trusting to this validity,effects of some other parameters are discussed.The results show that Nusselt number increases with increase of Reynolds number,Prandtl number and power law index.展开更多
In this problem,simultaneous effects of Joule and viscous dissipation in three-dimensional flow of nanoliquid have been addressed in slip flow regime under time dependent rotational oscillations.Silver nanoparticles a...In this problem,simultaneous effects of Joule and viscous dissipation in three-dimensional flow of nanoliquid have been addressed in slip flow regime under time dependent rotational oscillations.Silver nanoparticles are submerged in the base fluid(water)due to their chemical and biological features.To increment the novelty,effects of cubic autocatalysis chemical reactions and radiative heat transfer have been incorporated in the related boundary layer equations.Dimensionless partial differential system is solved by employing the proposed implicit finite difference approach.Convergence conditions and stability criteria are obtained to ensure the convergence and accuracy of solutions.A comparative analysis is proposed for no-slip nanofluid flow(NSNF)and slip nanofluid flow(SNF).Variations in skin-friction coefficients,Sherwood and Nusselt numbers against physical parameters are tabulated.It is investigated that velocity slip and temperature jump significantly control drag forces and rate of heat transfer.展开更多
Unsteady turbulent magnetohydrodynamic nanofluid hydrothermal treatment is studied. The zero- equation turbulence model is used to simulate turbulent flow. The modeling results obtained by applying the hybrid differen...Unsteady turbulent magnetohydrodynamic nanofluid hydrothermal treatment is studied. The zero- equation turbulence model is used to simulate turbulent flow. The modeling results obtained by applying the hybrid differential transformation method-finite difference method to solve this problem confirm its viability. An analytical procedure is used for finding the effects of the problem parameters. Results indicate that the average Nusselt number over the lower plate depends linearly on volume fraction of nanofluid, Hall parameter, turbulent Eckert number, and Reynolds number whereas it is inversely proportional on the Hartmann number and the turbulent parameter.展开更多
The main challenge for container ports is the planning required for berthing container ships while docked in port.Growth of containerization is creating problems for ports and container terminals as they reach their c...The main challenge for container ports is the planning required for berthing container ships while docked in port.Growth of containerization is creating problems for ports and container terminals as they reach their capacity limits of various resources which increasingly leads to traffic and port congestion.Good planning and management of container terminal operations reduces waiting time for liner ships.Reducing the waiting time improves the terminal’s productivity and decreases the port difficulties.Two important keys to reducing waiting time with berth allocation are determining suitable access channel depths and increasing the number of berths which in this paper are studied and analyzed as practical solutions.Simulation based analysis is the only way to understand how various resources interact with each other and how they are affected in the berthing time of ships.We used the Enterprise Dynamics software to produce simulation models due to the complexity and nature of the problems.We further present case study for berth allocation simulation of the biggest container terminal in Iran and the optimum access channel depth and the number of berths are obtained from simulation results.The results show a significant reduction in the waiting time for container ships and can be useful for major functions in operations and development of container ship terminals.展开更多
This paper is concerned with two popular and powerful methods in electrical drive applications:fieldoriented control(FOC)and space vector modulation(SVM).The proposed FOC-SVM method is incorporated with a predictive c...This paper is concerned with two popular and powerful methods in electrical drive applications:fieldoriented control(FOC)and space vector modulation(SVM).The proposed FOC-SVM method is incorporated with a predictive current control(PCC)-based technique.The suggested method estimates the desirable electrical torque to track mechanical torque at a fixed speed operation of permanent magnet synchronous motor(PMSM).The estimated torque is used to calculate the reference current based on FOC.In order to improve the performance of the traditional SVM,a PCC method is established as a switching pattern modifier.Therefore,PCC-based SVM is employed to further minimize the torque ripples and transient response.The performance of the controller is evaluated in terms of torque and current ripple and transient response to step variations of the torque command.The proposed method has been verified with MATLAB-Simulink model.Simulation results confirm the ability of this technique in minimizing the torque and speed ripples and fixing switching frequency,simultaneously.However,it is sensitive to parameter changes.展开更多
Forced convection heat transfer of ethylene glycol based nanofluid with FeOinside a porous medium is studied using the electric field. The control volume based finite element method(CVFEM) is selected for numerical si...Forced convection heat transfer of ethylene glycol based nanofluid with FeOinside a porous medium is studied using the electric field. The control volume based finite element method(CVFEM) is selected for numerical simulation. The impact of the radiation parameter(R), the supplied voltage(?φ), the volume fraction of nanofluid(?), the Darcy number(Da), and the Reynolds number(Re) on nanofluid treatment is demonstrated. Results prove that thermal radiation increases the temperature gradient near the positive electrode. Distortion of isotherms increases with the enhance of the Darcy number and the Coulomb force.展开更多
Let be a simple graph with vertex set and edge set . Let have at least vertices of degree at least , where and are positive integers. A function is said to be a signed -edge cover of if for at least vertices of , wher...Let be a simple graph with vertex set and edge set . Let have at least vertices of degree at least , where and are positive integers. A function is said to be a signed -edge cover of if for at least vertices of , where . The value , taking over all signed -edge covers of is called the signed -edge cover number of and denoted by . In this paper we give some bounds on the signed -edge cover number of graphs.展开更多
Due to the size and complexity of power network and the cost of monitoring and telecommunication equipment, it is unfeasible to monitor the whole system variables. All system analyzers use voltages and currents of the...Due to the size and complexity of power network and the cost of monitoring and telecommunication equipment, it is unfeasible to monitor the whole system variables. All system analyzers use voltages and currents of the network. Thus, monitoring scheme plays a main role in system analysis, control, and protection. To monitor the whole system using distributed measurements, strategic placement of them is needed. This paper improves a topological circuit observation method to minimize essential monitors. Besides the observability under normal condition of power networks, the observability of abnormal network is considered. Consequently, a high level of system reliability is carried out. In terms of reliability constraint, identification of bad measurement data in a given measurement system by making theme sure to be detectable is well done. Furthermore, it is maintained by a certain level of reliability against the single-line outages. Thus, observability is satisfied if all possible single line outages are plausible. Consideration of these limitations clears the role of utilizing an optimization algorithm. Hence, particle swarm optimization (PSO) is used to minimize monitoring cost and removing unobser-vable states under abnormal condition, simultaneously. The algorithm is tested in IEEE 14 and 30-bus test systems and Iranian (Mazandaran) Regional Electric Company.展开更多
A straightforward and efficient method for the synthesis of thiopyran derivatives via three-component reaction of alkyl propiolate, benzoylisothiocyanate or its derivatives and α-haloketones in the presence of triphe...A straightforward and efficient method for the synthesis of thiopyran derivatives via three-component reaction of alkyl propiolate, benzoylisothiocyanate or its derivatives and α-haloketones in the presence of triphenylphosphine under solvent-free conditions at 70℃ without using any catalyst is reported, The method offers several advantages including high yields of products and an easy work-up procedure.展开更多
Free convection in hybrid nanomaterial-saturated permeable media is crucial in various engineering applications.The present study aims to investigate the free convection of an aqueous-based hybrid nanomaterial through...Free convection in hybrid nanomaterial-saturated permeable media is crucial in various engineering applications.The present study aims to investigate the free convection of an aqueous-based hybrid nanomaterial through a zone under the combined effect of the Lorentz force and radiation.The natural convection of the hybrid nanomaterial is modeled by implementing a control volume finite element method(CVFEM)-based code,whereas Darcy assumptions are used to model the porosity terms in the momentum buoyancy equation involving the average Nusselt number Nu_(ave),flow streamlines,and isotherm profiles.A formula for estimating Nu_(ave) is proposed.The results show that the magnetic force retards the flow,and the fluid tends to attract the magnetic field source.Nu_(ave) is directly correlated with the Rayleigh number and radiation;however,it is indirectly dependent on the Hartmann number.Conduction is the dominant mode at larger Darcy and Hartmann numbers.展开更多
文摘In this study, the effects of magnetic field and nanoparticle on the Jeffery- Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes equation of fluid mechanics and Maxwell's electromagnetism governing equations are reduced to nonlinear ordinary differential equations to model the problem. The obtained results are well agreed with that of the Runge-Kutta method. The present plots confirm that the method has high accuracy for different a, Ha, and Re numbers. The flow field inside the divergent channel is studied for various values of Hartmann :number and angle of channel. The effect of nanoparticle volume fraction in the absence of magnetic field is investigated.
文摘The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanoparticles: TiO2, Ag, Cu, and A1203. The Brinkman and Maxwell-Garnetts models are used to simulate the viscosity and the effective thermal conductivity of nanofluids, respectively. Results from the performed numerical analysis show good agreement with those obtained from other numerical meth- ods. A variety of the Rayleigh number, the nanoparticle volume fraction, and the aspect ratio are examined. According to the results, choosing copper as the nanoparticle leads to obtaining the highest enhancement for this problem. The results also indicate that the maximum value of enhancement occurs at λ =2.5 when Ra = 106 while at A = 1.5 for other Rayleigh numbers.
文摘The TiO2-water based nanofluid flow in a channel bounded by two porous plates under an oblique magnetic field and variable thermal conductivity is formulated as a boundary-value problem(BVP). The BVP is analytically solved with the homotopy analysis method(HAM). The result shows that the concentration of the nanoparticles is independent of the volume fraction of TiO2nanoparticles, the magnetic field intensity, and the angle. It is inversely proportional to the mass diffusivity. The fluid speed decreases whereas the temperature increases when the volume fraction of the TiO2nanoparticles increases. This confirms the fact that the occurrence of the TiO2nanoparticles results in the increase in the thermal transfer rate. The fluid speed decreases and the temperature increases for both the pure water and the nanofluid when the magnetic field intensity and angle increase. The maximum velocity does not exist at the middle of the symmetric channel, which is in contrast to the plane-Poiseuille flow, but it deviates a little bit towards the lower plate, which absorbs the fluid with a very low suction velocity. If this suction velocity is increased, the temperature in the vicinity of the lower plate will be increased.An explicit expression for the friction factor-Reynolds number is then developed. It is shown that the Hartmann number of the nanofluid is smaller than that of pure water,while the Nusselt number of the nanofluid is larger than that of pure water. However,both the parameters increase if the magnetic field intensity increases.
文摘Microgrid(MG)is a small-scale,self-sufficient power system that accommodates various distributed energy resources(DERs),controllable loads,and future distribution systems.Networked microgrids(NMGs)are clusters of MGs,which are physically interconnected and functionally coordinated to enhance distribution systems in terms of economics,resilience,and reliability.This paper introduces the architecture and control of NMGs including nanogrid(NG)and MG.To accommodate variable DERs in NMGs,master and distributed control strategies are adopted to manage the high penetration of DERs,where master control focuses on economic operation,while distributed control focuses on reliability and resilience through active power sharing and voltage and frequency regulation.The initial practices of NG,MG,and NMG in the networked Illinois Institute of Technology(IIT)campus microgrid(ICM)and Bronzeville community microgrid(BCM)in the U.S.are presented.The applications of the master and distributed control strategies are illustrated for the networked ICM-BCM to show their benefits to economics,resilience,and reliability.
文摘Despite modern medicine’s advancements,age-related neurological diseases like Alzheimer’s disease and Parkinson’s disease remain challenging due to high costs,side effects,and limited accessibility.Ayurveda,a traditional Indian medicine system,offers Kadha tea as a potential herbal option.This review explores Kadha’s components(basil(Ocimum basilicum L.),black pepper(Piper nigrum L.),Cinnamon(Cinnamomum verum J.Presl),ginger(Zingiber officinale Roscoe),and raisin(Vitis vinifera L.))and their interaction with various neurological disorders.Studies suggest Kadha exhibits anti-inflammatory,antioxidant,and antiviral properties,potentially impacting Alzheimer’s disease,Parkinson’s disease,neurotoxicity,neuroinflammation,and brain trauma.By focusing on specific disease mechanisms and Kadha’s intergrade effects,this review aims to elucidate its potential role in managing age-related neurological disorders.
文摘Magnetic nanofiuid hydrothermal analysis over a plate is studied that includes consideration of thermal radiation. The Runge-Kutta (RK4) method is utilized to get solution of ODEs which are obtained from similarity solution. In considering the impacts of Brownian motion, we applied Koo-Kleinstreuer-Li cor- relation to simulate the properties of CuO-water. The influence is discussed of important parameters such as the temperature index, magnetic, radiation, and velocity ratio parameters and volume fraction of nanoparticle on hydrothermal behavior. Results illustrate that the coefficient of skin friction enhances with enhancing magnetic parameter while reduces with enhancing velocity ratio parameter. Also the Nusselt number was found to directly depend on the velocity ratio and temperature index parameters but has an inverse dependence on the magnetic and radiation parameters.
基金the National Elites Foundation of Iran (http://www.bmn.ir) for their moral and financial support throughout this project
文摘Free convection of FeaO4-Ethylene glycol nanofluid in existence of Coulomb forces is studied. Effect of thermal radiation is taken into account. Properties of nanofluid are varied with supplied voltage and shape of nanoparticles. The bottom wall is considered as positive electrode. Control Volume based Finite Element Method is used to obtain the results, which are the roles of Darcy number (Da), radiation parameter (Rd), Rayleigh number (Ra), nanofluid volume fraction (qS), and supplied voltage (△φ). Results indicate that Nusselt number is an enhancing function of supplied voltage and Darcy number. Maximum values for temperature gradient are occurred for platelet shape nanoparticles.
文摘Part baking of bread and frozen storage as the new methods have attracted a lot of attention due to an increase in shelf life and the availability of fresh bread at any time.Replacing traditional additives with natural gums such as plant gum for producing bread with long shelf life is considered as a major technological challenge in bakery industry.The present study aimed to evaluate the effects of 0,0.3%,and 0.5%concentrations of plant gums including Basil and Balangu,compared to guar gum at 0.4%on the physicochemical properties such as specific volume,extensibility,hardness,and color parameter,as well as sensory properties of part baked frozen bread.The results indicated adding gums to bread decreased in hardness and increased in specific volume,extensibility,color parameter and sensory properties.Based on the comparison between plant gums and guar,Basil and Balangu could improve volume,porosity,and sensory score more than guar against the guar which was more effective on moisture content and firmness of Barbari bread.The best results were obtained in the interaction between Basil and Balangu gums on 0.5%concentration.
文摘Let k be a positive integer. A Roman k-dominating function on a graph G is a labeling f : V(G) → {0, 1, 2} such that every vertex with label 0 has at least k neighbors with label 2. A set {f1, f2,..., fd} of distinct Roman k-dominating functions on G with the property that ∑di=1 fi(v) ≤ 2 for each v C V(G), is called a Roman k-dominating family (of functions) on G. The maximum number of functions in a Roman k-dominating family on G is the Roman k-domatic number of G, denoted by dkR(G). Note that the Roman 1-domatic number dlR(G) is the usual Roman domatic number dR(G). In this paper we initiate the study of the Roman k-domatic number in graphs and we present sharp bounds for dkR(G). In addition, we determine the Roman k-domatic number of some graphs. Some of our results extend those given by Sheikholeslami and Volkmann in 2010 for the Roman domatic number.
文摘In the present article Optimal Homotopy Asymptotic Method(OHAM)is used to obtain the solutions of momentum and heat transfer equations of non-Newtonian fluid flow in an axisymmetric channel with porous wall for turbine cooling applications.Numerical method is used for validity of this analytical method and excellent agreement is observed between the solutions obtained from OHAM and numerical results.Trusting to this validity,effects of some other parameters are discussed.The results show that Nusselt number increases with increase of Reynolds number,Prandtl number and power law index.
文摘In this problem,simultaneous effects of Joule and viscous dissipation in three-dimensional flow of nanoliquid have been addressed in slip flow regime under time dependent rotational oscillations.Silver nanoparticles are submerged in the base fluid(water)due to their chemical and biological features.To increment the novelty,effects of cubic autocatalysis chemical reactions and radiative heat transfer have been incorporated in the related boundary layer equations.Dimensionless partial differential system is solved by employing the proposed implicit finite difference approach.Convergence conditions and stability criteria are obtained to ensure the convergence and accuracy of solutions.A comparative analysis is proposed for no-slip nanofluid flow(NSNF)and slip nanofluid flow(SNF).Variations in skin-friction coefficients,Sherwood and Nusselt numbers against physical parameters are tabulated.It is investigated that velocity slip and temperature jump significantly control drag forces and rate of heat transfer.
文摘Unsteady turbulent magnetohydrodynamic nanofluid hydrothermal treatment is studied. The zero- equation turbulence model is used to simulate turbulent flow. The modeling results obtained by applying the hybrid differential transformation method-finite difference method to solve this problem confirm its viability. An analytical procedure is used for finding the effects of the problem parameters. Results indicate that the average Nusselt number over the lower plate depends linearly on volume fraction of nanofluid, Hall parameter, turbulent Eckert number, and Reynolds number whereas it is inversely proportional on the Hartmann number and the turbulent parameter.
文摘The main challenge for container ports is the planning required for berthing container ships while docked in port.Growth of containerization is creating problems for ports and container terminals as they reach their capacity limits of various resources which increasingly leads to traffic and port congestion.Good planning and management of container terminal operations reduces waiting time for liner ships.Reducing the waiting time improves the terminal’s productivity and decreases the port difficulties.Two important keys to reducing waiting time with berth allocation are determining suitable access channel depths and increasing the number of berths which in this paper are studied and analyzed as practical solutions.Simulation based analysis is the only way to understand how various resources interact with each other and how they are affected in the berthing time of ships.We used the Enterprise Dynamics software to produce simulation models due to the complexity and nature of the problems.We further present case study for berth allocation simulation of the biggest container terminal in Iran and the optimum access channel depth and the number of berths are obtained from simulation results.The results show a significant reduction in the waiting time for container ships and can be useful for major functions in operations and development of container ship terminals.
文摘This paper is concerned with two popular and powerful methods in electrical drive applications:fieldoriented control(FOC)and space vector modulation(SVM).The proposed FOC-SVM method is incorporated with a predictive current control(PCC)-based technique.The suggested method estimates the desirable electrical torque to track mechanical torque at a fixed speed operation of permanent magnet synchronous motor(PMSM).The estimated torque is used to calculate the reference current based on FOC.In order to improve the performance of the traditional SVM,a PCC method is established as a switching pattern modifier.Therefore,PCC-based SVM is employed to further minimize the torque ripples and transient response.The performance of the controller is evaluated in terms of torque and current ripple and transient response to step variations of the torque command.The proposed method has been verified with MATLAB-Simulink model.Simulation results confirm the ability of this technique in minimizing the torque and speed ripples and fixing switching frequency,simultaneously.However,it is sensitive to parameter changes.
文摘Forced convection heat transfer of ethylene glycol based nanofluid with FeOinside a porous medium is studied using the electric field. The control volume based finite element method(CVFEM) is selected for numerical simulation. The impact of the radiation parameter(R), the supplied voltage(?φ), the volume fraction of nanofluid(?), the Darcy number(Da), and the Reynolds number(Re) on nanofluid treatment is demonstrated. Results prove that thermal radiation increases the temperature gradient near the positive electrode. Distortion of isotherms increases with the enhance of the Darcy number and the Coulomb force.
文摘Let be a simple graph with vertex set and edge set . Let have at least vertices of degree at least , where and are positive integers. A function is said to be a signed -edge cover of if for at least vertices of , where . The value , taking over all signed -edge covers of is called the signed -edge cover number of and denoted by . In this paper we give some bounds on the signed -edge cover number of graphs.
文摘Due to the size and complexity of power network and the cost of monitoring and telecommunication equipment, it is unfeasible to monitor the whole system variables. All system analyzers use voltages and currents of the network. Thus, monitoring scheme plays a main role in system analysis, control, and protection. To monitor the whole system using distributed measurements, strategic placement of them is needed. This paper improves a topological circuit observation method to minimize essential monitors. Besides the observability under normal condition of power networks, the observability of abnormal network is considered. Consequently, a high level of system reliability is carried out. In terms of reliability constraint, identification of bad measurement data in a given measurement system by making theme sure to be detectable is well done. Furthermore, it is maintained by a certain level of reliability against the single-line outages. Thus, observability is satisfied if all possible single line outages are plausible. Consideration of these limitations clears the role of utilizing an optimization algorithm. Hence, particle swarm optimization (PSO) is used to minimize monitoring cost and removing unobser-vable states under abnormal condition, simultaneously. The algorithm is tested in IEEE 14 and 30-bus test systems and Iranian (Mazandaran) Regional Electric Company.
文摘A straightforward and efficient method for the synthesis of thiopyran derivatives via three-component reaction of alkyl propiolate, benzoylisothiocyanate or its derivatives and α-haloketones in the presence of triphenylphosphine under solvent-free conditions at 70℃ without using any catalyst is reported, The method offers several advantages including high yields of products and an easy work-up procedure.
文摘Free convection in hybrid nanomaterial-saturated permeable media is crucial in various engineering applications.The present study aims to investigate the free convection of an aqueous-based hybrid nanomaterial through a zone under the combined effect of the Lorentz force and radiation.The natural convection of the hybrid nanomaterial is modeled by implementing a control volume finite element method(CVFEM)-based code,whereas Darcy assumptions are used to model the porosity terms in the momentum buoyancy equation involving the average Nusselt number Nu_(ave),flow streamlines,and isotherm profiles.A formula for estimating Nu_(ave) is proposed.The results show that the magnetic force retards the flow,and the fluid tends to attract the magnetic field source.Nu_(ave) is directly correlated with the Rayleigh number and radiation;however,it is indirectly dependent on the Hartmann number.Conduction is the dominant mode at larger Darcy and Hartmann numbers.