Wrought magnesium alloys attract special interests as lightweight structural material due to their homogeneous microstructure and enhanced mechanical properties compared to as-cast alloys.In this contribution,recent r...Wrought magnesium alloys attract special interests as lightweight structural material due to their homogeneous microstructure and enhanced mechanical properties compared to as-cast alloys.In this contribution,recent research and developments on wrought magnesium alloys are reviewed from the viewpoint of the alloy design,focusing on Mg-Al,Mg-Zn and Mg-rare earth(RE)systems.The effects of different alloying elements on the microstructure and mechanical properties are described considering their strengthening mechanisms,e.g.grain refinement,precipitation and texture hardening effect.Finally,the new alloy design and also the future research of wrought magnesium alloys to improve their mechanical properties are discussed.展开更多
The present work investigates the influences of microalloying with rare earths on the mechanical properties of magnesium alloys.The amount of each rare earth element is controlled below 0.4 wt.%in order not to increas...The present work investigates the influences of microalloying with rare earths on the mechanical properties of magnesium alloys.The amount of each rare earth element is controlled below 0.4 wt.%in order not to increase the cost of alloy largely.The synergic effects from the multi-microalloying with rare earths on the mechanical properties are explored.The obtained results show that the as-cast magnesium alloys multi-microalloying with rare earths possesses a quite high ductility with a tensile strain up to 25-30%at room temperature.Moreover,these alloys exhibit much better corrosion resistance than AZ31 alloy.The preliminary in situ neutron diffractions on the deformation of these alloys indicate that the multi-microalloying with rare earths seems to be beneficial for the activation of more slip systems.The deformation becomes more homogeneous and the resultant textures after deformation are weakened.展开更多
The dynamic tensile properties and microstructural evolution of an extruded EW75 magnesium alloy deformed at ambient temperature and different high strain rates(from 1000 to 3000 s^(-1))along extrusion direction(ED)we...The dynamic tensile properties and microstructural evolution of an extruded EW75 magnesium alloy deformed at ambient temperature and different high strain rates(from 1000 to 3000 s^(-1))along extrusion direction(ED)were investigated by Split Hopkinson Tension Bar(SHTB).The corresponding deformation mechanisms,texture evolution and microstructure changes were analyzed by optical microscope(OM),electron backscatter diffraction(EBSD)and transmission electron microscope(TEM).The results show that the extruded EW75 magnesium alloy along ED exhibits a conventional positive strain rate sensitivity that the dynamic flow stresses increase with in creasing strain rate.Texture measurements show that after dynamic tension,the initial weak texture of extruded EW75 magnesium alloy tansforms to a relatively strong<10-10>//ED texture with increasing strain rates.The microstructural analysis demonstrates that dislocation motion are main deformatin mode to accommodate dynamic tensile deformation at high strain rates.In addition,the interactions of dislocation-dislocation and dislocation-second phase lead to the in crease of flow stress and strain hardening with increasing strain rate.展开更多
Effects of samarium (Sm) content (0, 2.0, 3.5, 5.0, 6.5 wt%) on microstructure and mechanical proper-ties of Mg-0.5Zn-0.5 Zr alloy under as-cast and as-extruded states were thoroughly investigated. Results indicate th...Effects of samarium (Sm) content (0, 2.0, 3.5, 5.0, 6.5 wt%) on microstructure and mechanical proper-ties of Mg-0.5Zn-0.5 Zr alloy under as-cast and as-extruded states were thoroughly investigated. Results indicate that grains of the as-cast alloys are gradually refined as Sm content increases. The dominant intermetallic ph^se changes from Mg3Sm to Mg4iSm5 till Sm content exceeds 5.0 wt%. The dynami-cally precipitated intermetallic phase during hot-extrusion in dll Sm-containing alloys is Mg3Sm. The intermetallic particles induced by Sm addition could act as heterogeneous nucleation sites for dynamic recrystallization during hot extrusion. They promoted dynamic recrystallization via the particle stim-ulated nucleation mechanism, and resulted in weakening the basal texture in the as-extruded alloys. Sm addition can significantly enhance the strength of the as-extruded Mg-0.5Zn-0.5Zr alloy at room temperature, with the optimal dosage of 3.5 wt%. The optimal yield strength (YS) and ultimate tensile strength (UTS) are 368 MPa and 383 MPa, which were enhanced by approximately 23.1% and 20.8% com-pared with the Sm-free alloy, respectively. Based on microstructural analysis, the dominant strengthening mechanisms are revealed to be grain boundary strengthening and dispersion strengthening.展开更多
The influence of Ce addition on the microstructure and mechanical properties of AM50 magnesium alloy was investigated to improve its mechanical properties.The results show that the addition of Ce to AM50 alloy results...The influence of Ce addition on the microstructure and mechanical properties of AM50 magnesium alloy was investigated to improve its mechanical properties.The results show that the addition of Ce to AM50 alloy results in the grain refinement and the mechanical properties of the Ce-modified AM50 at room and elevated temperatures are remarkably improved.AM50 magnesium alloy containing 1% Ce(mass fraction) shows better refinement and mechanical properties compared with the AM50 magnesium alloy with 0.5% Ce and even AM50 alloy without any Ce.展开更多
Mg–RE(Dy,Gd,Y)alloys show promising for being developed as biodegradable medical applications.It is found that the hydride REH_(2) could be formed on the surface of samples during their preparations with water cleani...Mg–RE(Dy,Gd,Y)alloys show promising for being developed as biodegradable medical applications.It is found that the hydride REH_(2) could be formed on the surface of samples during their preparations with water cleaning.The amount of formed hydrides in Mg–RE alloys is affected by the content of RE and heat treatments.It increases with the increment of RE content.On the surface of the alloy with T4 treatment the amount of formed hydride REH_(2) is higher.In contrast,the amount of REH2 is lower on the surfaces of as-cast and T6-treated alloys.Their formation mechanism is attributed to the surface reaction of Mg–RE alloys with water.The part of RE in solid solution in Mg matrix plays an important role in influencing the formation of hydrides.展开更多
Large-scale Mg-8Gd-4Y-1Zn-Mn(wt.%)alloy ingot with a diameter of 315 mm and a length of 2410 mm was prepared through semi-continuous casting.Chemical composition,microstructure and mechanical properties at different l...Large-scale Mg-8Gd-4Y-1Zn-Mn(wt.%)alloy ingot with a diameter of 315 mm and a length of 2410 mm was prepared through semi-continuous casting.Chemical composition,microstructure and mechanical properties at different locations of the samples with as-cast,T4 and T6 heat-treated states,respectively,were investigated.No obvious macro segregation has been detected in the high-quality alloy ingot.The main eutectic structures at all different locations are composed ofα-Mg,Mg3RE-type,Mg5RE-type and LPSO phases.At the edge of ingot,the unusual casting twins including 10-12 extension twins and 10-11 compression twins were observed due to the intensive internal stress.In T4 heat-treated alloy,the micro segregation was eliminated.The remained phases wereα-Mg and LPSO phase.Combined with the remarkable age-hardening response,T6 samples exhibits improved mechanical properties at ambient temperature,which derives from the dense prismaticβ'precipitates and profuse basalγ'precipitates.展开更多
Previous investigations indicate that the creep resistance of magnesium alloys is proportional to the stability of precipitated intermetallic phases at grain boundaries.These stable intermetallic phases were considere...Previous investigations indicate that the creep resistance of magnesium alloys is proportional to the stability of precipitated intermetallic phases at grain boundaries.These stable intermetallic phases were considered to be effective to suppress the deformation by grain boundary sliding,leading to the improvement of creep properties.Based on this point,adding the alloying elements to form the stable intermetallics with high melting point became a popular way to develop the new creep resistant magnesium alloys.The present investigation,however,shows that the creep properties of binary Mg-Sn alloy are still poor even though the addition of Sn possibly results in the precipitation of thermal stable Mg_(2)Sn at grain boundaries.That means other possible mechanisms function to affect the creep response.It is finally found that the poor creep resistance is attributed to the segregation of Sn at dendritic and grain boundaries.Based on this observation,new approaches to improve the creep resistance are suggested for magnesium alloys because most currently magnesium alloys have the commonality with the Mg-Sn alloys.展开更多
The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rat...The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rates ranging from 0.001 to 1 s^(-1).Results showed that an increase in the strain rate or a decrease in deformation temperature led to an increase in true stress.The constitutive equation and processing maps of the alloy were obtained and analyzed.The influence of deformation temperatures and strain rates on microstructural evolution and texture was studied with the assistance of electron backscatter diffraction(EBSD).The as-extruded alloy exhibited a bimodal structure that consisted of deformed coarse grains and fine equiaxed recrystallized structures(approximately 1.57μm).The EBSD results of deformed alloy samples revealed that the recrystallization degree and average grain size increased as the deformation temperature increased.By contrast,dislocation density and texture intensity decreased.Compressive texture weakened with the increase in the deformation temperature at the strain rate of 0.01 s-1.Most grains with{0001}planes tilted away from the compression direction(CD)gradually.In addition,when the strain rate decreased,the recrystallization degree and average grain size increased.Meanwhile,the dislocation density decreased.Texture appeared to be insensitive to the strain rate.These findings provide valuable insights into the hot compression behavior,microstructural evolution,and texture changes in the Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy,contributing to the understanding of its processing-microstructure-property relationships.展开更多
The effects of 1Zn and/or 2Ag additions on the hot tearing susceptibility(HTS)of Mg-14Gd-0.4Zr(wt%)alloy were studied.The HTS was evaluated by both theoretical predictions using Kou's criterion and experimental ob...The effects of 1Zn and/or 2Ag additions on the hot tearing susceptibility(HTS)of Mg-14Gd-0.4Zr(wt%)alloy were studied.The HTS was evaluated by both theoretical predictions using Kou's criterion and experimental observations based on the in situ force-temperature recorded constrained rod casting(ISFTCRC)method.The results show that the order of HTS from high to low is Mg-14Gd-2Ag-1Zn-0.4Zr,Mg-14Gd-2Ag-0.4Zr,Mg-14Gd-1Zn-0.4Zr and Mg-14Gd-0.4Zr.Adding 1Zn and/or 2Ag changes the solidification path and the solidification interval,which affects the hot tearing susceptibility.Alloying elemental 1Zn slightly increases the solidification interval and the temperature range in the square root of the solid phase fraction(f_(s)^(1/2))range of 0.949-0.995,resulting in a slight increase in the hot tearing susceptibility.The addition of 2Ag drastically widens both the solidification interval and the temperature range in the f_(s)^(1/2)range of 0.949-0.995,thus significantly increasing the hot tearing susceptibility.Compared to the addition of 2Ag alone,the broadening degree of both the solidification interval and the temperature range in the f_(s)^(1/2)range of 0.949-0.995 is greater by adding the composite 2Ag/1Zn,which further promotes the occurrence of hot tearing.A narrower solidification interval and a temperature range in the f_(s)^(1/2)range of 0.949-0.995 result in a lower hot tearing susceptibility.展开更多
A biodegradable metallic ureteral stent with suitable mechanical properties and antibacterial activity remains a challenge.Here we reveal the scientific significance of a biodegradable Mg-Sr-Ag alloy with a favorable ...A biodegradable metallic ureteral stent with suitable mechanical properties and antibacterial activity remains a challenge.Here we reveal the scientific significance of a biodegradable Mg-Sr-Ag alloy with a favorable combination of balanced mechanical properties,adjustable indwelling time in urinary tract and evident antibacterial activity via in vivo experiments in a swine model.Attributed to the rheo-solidification process,equiaxial microstructure and significantly refined grains(average grain size:27.1μm)were achieved.Mg17Sr2 and Mg4Ag were found as the primary precipitates in the matrix,due to which the alloy obtained ca.111%increase in ultimate tensile strength in comparison to pure magnesium.Both the in vitro and in vivo results demonstrated the satisfactory biocompatibility of the alloy.Histological evaluation and bioindicators analysis suggested that there was no tissue damage,inflammation and lesions in the urinary system caused by the degradation process.The stent also improved the post-operative bladder functions viewed from the urodynamic results.Our findings highlight the potential of this alloy as antibacterial biodegradable urinary implant material.展开更多
With the development of new heat resistant magnesium alloys, the automotive industry has introduced several parts to the drive train. The rising number of large magnesium components will result in a higher quantity of...With the development of new heat resistant magnesium alloys, the automotive industry has introduced several parts to the drive train. The rising number of large magnesium components will result in a higher quantity of automotive post consumer scrap. It was the aim of this work to find a reasonable alloy system for the recycling of these magnesium drive train components. A matrix of potential recy-cling alloys based on the magnesium alloy AM50 was prepared via permanent mould casting. The materials were investigated via tensile testing, creep tests and salt spray tests. Three alloys were selected for processing via high pressure die casting and the tests were repeated on the new materials. A promising system for recycling has been isolated and will be investigated more deeply for the influence of impurities.展开更多
In order to improve the ductility of commercial WE43 alloy and reduce its cost,a Mg-3Y-2Gd-1Nd-0.4Zr alloy with a low amount of rare earths was developed and prepared by sand casting with a differential pressure casti...In order to improve the ductility of commercial WE43 alloy and reduce its cost,a Mg-3Y-2Gd-1Nd-0.4Zr alloy with a low amount of rare earths was developed and prepared by sand casting with a differential pressure casting system.Its microstructure,mechanical properties and fracture behaviors in the as-cast,solution-treated and as-aged states were evaluated.It is found that the aged alloy exhibited excellent comprehensive mechanical properties owing to the fine dense plate-shapedβ'precipitates formed on prismatic habits during aging at 200℃for 192 hrs after solution-treated at 500℃for 24 hrs.Its ultimate tensile strength,yield strength,and elongation at ambient temperature reach to 319±10 MPa,202±2 MPa and 8.7±0.3%as well as 230±4 MPa,155±1 MPa and 16.0±0.5%at 250℃.The fracture mode of as-aged alloy was transferred from cleavage at room temperature to quasi-cleavage and ductile fracture at the test temperature 300℃.The properties of large-scale components fabricated using the developed Mg-3Y-2Gd-1Nd-0.4Zr alloy are better than those of commercial WE43 alloy,suggesting that the new developed alloy is a good candidate to fabricate the large complex thin-walled components.展开更多
The introduction of biodegradable implant materials has significantly improved the postoperative subjective feelings of patients within the past few decades,among which magnesium alloy is widely considered a favorable...The introduction of biodegradable implant materials has significantly improved the postoperative subjective feelings of patients within the past few decades,among which magnesium alloy is widely considered a favorable choice as its appropriate biodegradability and evident antibacterial activity.Here,we reveal a semisolid rheo-formed Mg–Zn–Sr alloy ureteral implant that displayed suitable degradability and biocompatibility in a pig model.Refined non-dendritic microstructure was observed in the rheo-formed alloy,which led to ca.47%increase in ultimate tensile strength(from 195.0 MPa to 288.1 MPa)and more homogeneous degradation process compared with the untreated alloy.No post-interventional inflammation or pathological changes of the test animals were observed during the implantation period,and the corrosion rate(0.22±0.04 mm·y^(-1))perfectly fitted the clinical ureteral stent indwelling time.The urine bacteria numbers decreased from 88±13 CFU·mL^(-1)at 7 weeks post operation to 59±8 CFU·mL^(-1)at 14 weeks post operation,which confirmed the evident antibacterial activity of the alloy.Our study demonstrates that the Mg–Zn–Sr alloy is clinically safe for urinary system,enabling its efficacious use as ureteral implant materials.展开更多
Microstructural evolution and strengthening mechanisms of Mg-3Sn-1Ca based alloys with additions of different amounts of Al N nanoparticles were investigated.It was found that with increasing the amount of AlN nano-pa...Microstructural evolution and strengthening mechanisms of Mg-3Sn-1Ca based alloys with additions of different amounts of Al N nanoparticles were investigated.It was found that with increasing the amount of AlN nano-particles the grain size decreases obviously.The existence of AlN nano-particles could refine the primary crystal phases CaMgSn,which provided more heterogeneous nucleation sites for the formation of magnesium.Moreover,such nano-particles could also restrict the grain growth during solidification.After adding AlN nano-particles,both the tensile properties at room temperature and high temperature 250℃and the hardness are largely improved.The improvement of strength is attributed to grain refinement and second phase refinement.展开更多
LSD (Lumpy Skin Disease) is a poxviral disease with significant morbidity in cattle and belongs to the family Poxviridae and the genus Capripoxvirus and is transmitted by hematophagous arthropod vectors. Despite the t...LSD (Lumpy Skin Disease) is a poxviral disease with significant morbidity in cattle and belongs to the family Poxviridae and the genus Capripoxvirus and is transmitted by hematophagous arthropod vectors. Despite the typically low mortality rate, economic costs arise from deterioration in health, decreased milk production, miscarriages, infertility and harmed hides. Brucellosis disease is one of the most common contagious and communicable zoonotic diseases with high rates of morbidity and lifetime sterility. Serological tests with ELISA (Enzyme-Linked Immunosorbent Assays) indicate exposure to Brucella and LSD in cattle. To identify the presence of those diseases, the research was conducted in two provinces, Svay Rieng and Prey Veng, in Cambodia, starting from July 2021 to January 2022. In the study, the 2018 Thusfield method was adopted, and two cattle were selected from 216 households in the two provinces (112 in Svay Rieng and 104 in Prey Veng). However, not all the families had two cattle, so the total sample size was 300 cattle (227 in Svay Rieng and 73 in Prey Veng). As a result, there was only one brucellosis disease case in Svay Rieng Province, while that disease was not found at all in Prey Veng. Meanwhile, LSD was higher in Prey Veng (80% of the tested cattle) than in Svay Rieng (69%). Among all of the tested cattle, 66.7% had the highest BS (Body Score = 4). The finding suggests that LSD was prevalent in the studied areas, which may cause economic losses. Thus, preventive measures should be taken properly to tackle this issue. Although Brucellosis was a rare case in the studied areas, it may spread faster, causing abortion in cattle and women. Biosecurity is needed to ensure a strict control over this disease.展开更多
The microstructures of as-cast ZK40,ZK40 with 2%(mass fraction)CaO and ZK40 with 1%(mass fraction)Y were investigated,and the intermetallic phase morphology and the distribution were characterised.By having discrete i...The microstructures of as-cast ZK40,ZK40 with 2%(mass fraction)CaO and ZK40 with 1%(mass fraction)Y were investigated,and the intermetallic phase morphology and the distribution were characterised.By having discrete intermetallic particles at the grain boundaries for the ZK40,the microstructure was modified to a semi-continuous network of intermetallic compounds along the grain boundaries for the ZK40 with CaO or Y additions.The CaO was not found in the microstructure.However,Ca was present in Ca2Mg6Zn3 intermetallic compounds which were formed during casting.Hydrogen evolution and electrochemical impedance spectroscopy tests revealed that the addition of CaO slightly enhanced the corrosion resistance whereas Y had a negative effect on the corrosion resistance of ZK40.Immersion tests showed that severe localised corrosion as well as corrosion along the intermetallic compounds played an important role in the corrosion process of ZK40-Y whereas the localised corrosion was not pronounced for ZK40 or ZK40?CaO alloys.Micro-segregation in theα-Mg matrix was notably higher for the ZK40 alloy compared with the modified alloys.The combination of this effect with a possible formation of a more stable corrosion layer for the ZK40-CaO was attributed as the main reason for an improved corrosion resistance for the ZK40-CaO alloy.展开更多
In this study,the texture evolutions of two Mg materials during tension are explored.In-situ X-ray synchrotron and Visco-Plastic SelfConsistent(VPSC) modeling are employed to investigate the different deformation mode...In this study,the texture evolutions of two Mg materials during tension are explored.In-situ X-ray synchrotron and Visco-Plastic SelfConsistent(VPSC) modeling are employed to investigate the different deformation modes between pure Mg and Mg-15Gd(wt.%) alloy.These two materials with a strong extrusion texture show large different slip/twinning activity behaviors during tensile deformation.The basal(a) slip has the highest contribution to the initial stage of plastic deformation for pure Mg.During the subsequent plastic deformation,the prismatic slip is dominant due to the strong ED//(100) fiber texture.In contrast,the deformation behavior of Mg-15Gd alloy is more complex.Twinning and basal slip are dominant at the early stage of plastic deformation,but further deformation results in the increased activation of prismatic and pyramidal slips.In comparison to pure Mg,the ratios of the critical resolved shear stress(CRSS) between non-basal slip and basal slip of the Mg-15Gd alloy are much lower.展开更多
BACKGROUND: The differential diagnosis of many neurodegenerative disorders depends primarily on clinical symptoms together with imaging methods. Recently, increased importance has been placed on the use of biomarkers...BACKGROUND: The differential diagnosis of many neurodegenerative disorders depends primarily on clinical symptoms together with imaging methods. Recently, increased importance has been placed on the use of biomarkers for diagnosing various neurodegenerative disorders. OBJECTIVE: To assess the feasibility of tau-protein, phosphorylated tau-protein, beta-amyloid 42 (Aβ42), and 14-3-3 protein as biomarkers for diagnosing several neurodegenerative diseases complicated by cognitive deficits. DESIGN, TIME AND SETTING: A non-randomized, concurrent, case-control investigation was performed in three medical centers in the Czech Republic (Department of Neurology at the University Hospital in Hradec Kralove, Department of Neurology at the 2rd Medical Faculty, and the University Hospital Motol) between October 2000 and November 2006. PARTICIPANTS: Eighteen patients with probable AIzheimer's disease, 4 patients with Creutzfeldt-Jakob disease, 10 patients with frontotemporal dementia, 9 patients with clinically isolated syndrome suggestive of multiple sclerosis, and 7 patients with multiple sclerosis, as well as 38 race-, nationality-, and age-matched cognitively intact controls, were included in the study. Diagnoses were established based on the following criteria: the criteria for Alzheimer's disease proposed by the National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer's Disease and Related Disorders Association, WHO criteria for Creutzfeldt-Jakob disease, Neary criteria for frontotemporal dementia, and McDonald's criteria for multiple sclerosis. All included patients were confirmed to suffer from various degrees of dementia. METHODS: Enzyme-linked immunosorbent assay was used to measure concentrations of tau-protein, phosphorylated tau-protein, and Aβ42 in cerebrospinal fluid (CSF) samples collected by standard lumbar puncture from each patient. Moreover, 14-3-3 protein was assessed by Western blot in CSF of Creutzfeldt-Jakob disease patients. Cognitive status 展开更多
文摘Wrought magnesium alloys attract special interests as lightweight structural material due to their homogeneous microstructure and enhanced mechanical properties compared to as-cast alloys.In this contribution,recent research and developments on wrought magnesium alloys are reviewed from the viewpoint of the alloy design,focusing on Mg-Al,Mg-Zn and Mg-rare earth(RE)systems.The effects of different alloying elements on the microstructure and mechanical properties are described considering their strengthening mechanisms,e.g.grain refinement,precipitation and texture hardening effect.Finally,the new alloy design and also the future research of wrought magnesium alloys to improve their mechanical properties are discussed.
文摘The present work investigates the influences of microalloying with rare earths on the mechanical properties of magnesium alloys.The amount of each rare earth element is controlled below 0.4 wt.%in order not to increase the cost of alloy largely.The synergic effects from the multi-microalloying with rare earths on the mechanical properties are explored.The obtained results show that the as-cast magnesium alloys multi-microalloying with rare earths possesses a quite high ductility with a tensile strain up to 25-30%at room temperature.Moreover,these alloys exhibit much better corrosion resistance than AZ31 alloy.The preliminary in situ neutron diffractions on the deformation of these alloys indicate that the multi-microalloying with rare earths seems to be beneficial for the activation of more slip systems.The deformation becomes more homogeneous and the resultant textures after deformation are weakened.
基金The authors would like to thank Professor Kui Zhang,Beijing General Research Institute for Nonferrous Metal,for providing EW75 magnesium alloy for this work and acknowledge the funding from the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.17KJD430006)Scientific and Technological Innovation Team Foundation of Wuxi Institute of Technology(No.30593118001)Scientific Research Project of Wuxi Institute of Technology(No.ZK201901).The help of EBSD experiment provided by Yukyung Shin from Helmholtz-Zentrum Geesthacht is gratefully acknowledged.
文摘The dynamic tensile properties and microstructural evolution of an extruded EW75 magnesium alloy deformed at ambient temperature and different high strain rates(from 1000 to 3000 s^(-1))along extrusion direction(ED)were investigated by Split Hopkinson Tension Bar(SHTB).The corresponding deformation mechanisms,texture evolution and microstructure changes were analyzed by optical microscope(OM),electron backscatter diffraction(EBSD)and transmission electron microscope(TEM).The results show that the extruded EW75 magnesium alloy along ED exhibits a conventional positive strain rate sensitivity that the dynamic flow stresses increase with in creasing strain rate.Texture measurements show that after dynamic tension,the initial weak texture of extruded EW75 magnesium alloy tansforms to a relatively strong<10-10>//ED texture with increasing strain rates.The microstructural analysis demonstrates that dislocation motion are main deformatin mode to accommodate dynamic tensile deformation at high strain rates.In addition,the interactions of dislocation-dislocation and dislocation-second phase lead to the in crease of flow stress and strain hardening with increasing strain rate.
基金supported financially by the National Natural Science Foundation of China (Nos. 51701200 and 21601017)the Project for Science & Technology Development of Jilin Province (Nos. 2016YHZ0006, 20170414001GH, 20180520004JH and 20180520160JH)
文摘Effects of samarium (Sm) content (0, 2.0, 3.5, 5.0, 6.5 wt%) on microstructure and mechanical proper-ties of Mg-0.5Zn-0.5 Zr alloy under as-cast and as-extruded states were thoroughly investigated. Results indicate that grains of the as-cast alloys are gradually refined as Sm content increases. The dominant intermetallic ph^se changes from Mg3Sm to Mg4iSm5 till Sm content exceeds 5.0 wt%. The dynami-cally precipitated intermetallic phase during hot-extrusion in dll Sm-containing alloys is Mg3Sm. The intermetallic particles induced by Sm addition could act as heterogeneous nucleation sites for dynamic recrystallization during hot extrusion. They promoted dynamic recrystallization via the particle stim-ulated nucleation mechanism, and resulted in weakening the basal texture in the as-extruded alloys. Sm addition can significantly enhance the strength of the as-extruded Mg-0.5Zn-0.5Zr alloy at room temperature, with the optimal dosage of 3.5 wt%. The optimal yield strength (YS) and ultimate tensile strength (UTS) are 368 MPa and 383 MPa, which were enhanced by approximately 23.1% and 20.8% com-pared with the Sm-free alloy, respectively. Based on microstructural analysis, the dominant strengthening mechanisms are revealed to be grain boundary strengthening and dispersion strengthening.
基金Financial support from Turkey Council of Higher Education(YOK) Scholarship for Faruk's PhD Study in Helmholtz-Zentrum Geesthacht HZG is also appreciated
文摘The influence of Ce addition on the microstructure and mechanical properties of AM50 magnesium alloy was investigated to improve its mechanical properties.The results show that the addition of Ce to AM50 alloy results in the grain refinement and the mechanical properties of the Ce-modified AM50 at room and elevated temperatures are remarkably improved.AM50 magnesium alloy containing 1% Ce(mass fraction) shows better refinement and mechanical properties compared with the AM50 magnesium alloy with 0.5% Ce and even AM50 alloy without any Ce.
文摘Mg–RE(Dy,Gd,Y)alloys show promising for being developed as biodegradable medical applications.It is found that the hydride REH_(2) could be formed on the surface of samples during their preparations with water cleaning.The amount of formed hydrides in Mg–RE alloys is affected by the content of RE and heat treatments.It increases with the increment of RE content.On the surface of the alloy with T4 treatment the amount of formed hydride REH_(2) is higher.In contrast,the amount of REH2 is lower on the surfaces of as-cast and T6-treated alloys.Their formation mechanism is attributed to the surface reaction of Mg–RE alloys with water.The part of RE in solid solution in Mg matrix plays an important role in influencing the formation of hydrides.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0301100)the Natural Science Foundation Commission of China(Nos.51571044 and 51874062)+2 种基金the Chongqing foundation and advanced research project(No.cstc2019jcyjzdxmX0010)the Fundamental Research Funds for the Central Universities(Nos.2018CDGFCL0005 and 2019CDXYCL0031)the financial support from the China Scholarship Council(No.201906050113)。
文摘Large-scale Mg-8Gd-4Y-1Zn-Mn(wt.%)alloy ingot with a diameter of 315 mm and a length of 2410 mm was prepared through semi-continuous casting.Chemical composition,microstructure and mechanical properties at different locations of the samples with as-cast,T4 and T6 heat-treated states,respectively,were investigated.No obvious macro segregation has been detected in the high-quality alloy ingot.The main eutectic structures at all different locations are composed ofα-Mg,Mg3RE-type,Mg5RE-type and LPSO phases.At the edge of ingot,the unusual casting twins including 10-12 extension twins and 10-11 compression twins were observed due to the intensive internal stress.In T4 heat-treated alloy,the micro segregation was eliminated.The remained phases wereα-Mg and LPSO phase.Combined with the remarkable age-hardening response,T6 samples exhibits improved mechanical properties at ambient temperature,which derives from the dense prismaticβ'precipitates and profuse basalγ'precipitates.
文摘Previous investigations indicate that the creep resistance of magnesium alloys is proportional to the stability of precipitated intermetallic phases at grain boundaries.These stable intermetallic phases were considered to be effective to suppress the deformation by grain boundary sliding,leading to the improvement of creep properties.Based on this point,adding the alloying elements to form the stable intermetallics with high melting point became a popular way to develop the new creep resistant magnesium alloys.The present investigation,however,shows that the creep properties of binary Mg-Sn alloy are still poor even though the addition of Sn possibly results in the precipitation of thermal stable Mg_(2)Sn at grain boundaries.That means other possible mechanisms function to affect the creep response.It is finally found that the poor creep resistance is attributed to the segregation of Sn at dendritic and grain boundaries.Based on this observation,new approaches to improve the creep resistance are suggested for magnesium alloys because most currently magnesium alloys have the commonality with the Mg-Sn alloys.
基金supported by the National Key R&D Program of China(No.2021YFB3701100)the National Natural Science Foundation of China(No.52271091)the China Scholarship Council(No.202206050135)。
文摘The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rates ranging from 0.001 to 1 s^(-1).Results showed that an increase in the strain rate or a decrease in deformation temperature led to an increase in true stress.The constitutive equation and processing maps of the alloy were obtained and analyzed.The influence of deformation temperatures and strain rates on microstructural evolution and texture was studied with the assistance of electron backscatter diffraction(EBSD).The as-extruded alloy exhibited a bimodal structure that consisted of deformed coarse grains and fine equiaxed recrystallized structures(approximately 1.57μm).The EBSD results of deformed alloy samples revealed that the recrystallization degree and average grain size increased as the deformation temperature increased.By contrast,dislocation density and texture intensity decreased.Compressive texture weakened with the increase in the deformation temperature at the strain rate of 0.01 s-1.Most grains with{0001}planes tilted away from the compression direction(CD)gradually.In addition,when the strain rate decreased,the recrystallization degree and average grain size increased.Meanwhile,the dislocation density decreased.Texture appeared to be insensitive to the strain rate.These findings provide valuable insights into the hot compression behavior,microstructural evolution,and texture changes in the Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy,contributing to the understanding of its processing-microstructure-property relationships.
基金Project supported by the National Natural Science Foundation of China(U2037601,52074183)Shanghai Sailing Program(23YF1417100)。
文摘The effects of 1Zn and/or 2Ag additions on the hot tearing susceptibility(HTS)of Mg-14Gd-0.4Zr(wt%)alloy were studied.The HTS was evaluated by both theoretical predictions using Kou's criterion and experimental observations based on the in situ force-temperature recorded constrained rod casting(ISFTCRC)method.The results show that the order of HTS from high to low is Mg-14Gd-2Ag-1Zn-0.4Zr,Mg-14Gd-2Ag-0.4Zr,Mg-14Gd-1Zn-0.4Zr and Mg-14Gd-0.4Zr.Adding 1Zn and/or 2Ag changes the solidification path and the solidification interval,which affects the hot tearing susceptibility.Alloying elemental 1Zn slightly increases the solidification interval and the temperature range in the square root of the solid phase fraction(f_(s)^(1/2))range of 0.949-0.995,resulting in a slight increase in the hot tearing susceptibility.The addition of 2Ag drastically widens both the solidification interval and the temperature range in the f_(s)^(1/2)range of 0.949-0.995,thus significantly increasing the hot tearing susceptibility.Compared to the addition of 2Ag alone,the broadening degree of both the solidification interval and the temperature range in the f_(s)^(1/2)range of 0.949-0.995 is greater by adding the composite 2Ag/1Zn,which further promotes the occurrence of hot tearing.A narrower solidification interval and a temperature range in the f_(s)^(1/2)range of 0.949-0.995 result in a lower hot tearing susceptibility.
基金This work was supported by National Natural Science Foundation of China(grant numbers 51771045 and U1764254)Special thanks are due to the instrumental analysis from Analytical and Testing Center,Northeastern University.The authors sincerely acknowledge the Animal Experimental Center of China Medical University for the in vivo experiments.
文摘A biodegradable metallic ureteral stent with suitable mechanical properties and antibacterial activity remains a challenge.Here we reveal the scientific significance of a biodegradable Mg-Sr-Ag alloy with a favorable combination of balanced mechanical properties,adjustable indwelling time in urinary tract and evident antibacterial activity via in vivo experiments in a swine model.Attributed to the rheo-solidification process,equiaxial microstructure and significantly refined grains(average grain size:27.1μm)were achieved.Mg17Sr2 and Mg4Ag were found as the primary precipitates in the matrix,due to which the alloy obtained ca.111%increase in ultimate tensile strength in comparison to pure magnesium.Both the in vitro and in vivo results demonstrated the satisfactory biocompatibility of the alloy.Histological evaluation and bioindicators analysis suggested that there was no tissue damage,inflammation and lesions in the urinary system caused by the degradation process.The stent also improved the post-operative bladder functions viewed from the urodynamic results.Our findings highlight the potential of this alloy as antibacterial biodegradable urinary implant material.
文摘With the development of new heat resistant magnesium alloys, the automotive industry has introduced several parts to the drive train. The rising number of large magnesium components will result in a higher quantity of automotive post consumer scrap. It was the aim of this work to find a reasonable alloy system for the recycling of these magnesium drive train components. A matrix of potential recy-cling alloys based on the magnesium alloy AM50 was prepared via permanent mould casting. The materials were investigated via tensile testing, creep tests and salt spray tests. Three alloys were selected for processing via high pressure die casting and the tests were repeated on the new materials. A promising system for recycling has been isolated and will be investigated more deeply for the influence of impurities.
基金This work was funded by the National Natural Science Foundation of China(No.U2037601 and No.52074183)The authors appreciate Ge Chen,Wenbin Zou as well as Shiwei Wang for preparing the alloys,Wenyu Liu as well as Xuehao Zheng from ZKKF(Beijing)Science&Technology Co.,Ltd for the TEM measurement,Gert Wiese as well as Petra Fischer for SEM and hardness measurement and Yunting Li from the Instrument Analysis Center of Shanghai Jiao Tong University(China)for SEM measurement.Lixiang Yang also gratefully thanks the China Scholarship Council(201906230111)for awarding a fellowship to support his study stay at Helmholtz-Zentrum Geesthacht.
文摘In order to improve the ductility of commercial WE43 alloy and reduce its cost,a Mg-3Y-2Gd-1Nd-0.4Zr alloy with a low amount of rare earths was developed and prepared by sand casting with a differential pressure casting system.Its microstructure,mechanical properties and fracture behaviors in the as-cast,solution-treated and as-aged states were evaluated.It is found that the aged alloy exhibited excellent comprehensive mechanical properties owing to the fine dense plate-shapedβ'precipitates formed on prismatic habits during aging at 200℃for 192 hrs after solution-treated at 500℃for 24 hrs.Its ultimate tensile strength,yield strength,and elongation at ambient temperature reach to 319±10 MPa,202±2 MPa and 8.7±0.3%as well as 230±4 MPa,155±1 MPa and 16.0±0.5%at 250℃.The fracture mode of as-aged alloy was transferred from cleavage at room temperature to quasi-cleavage and ductile fracture at the test temperature 300℃.The properties of large-scale components fabricated using the developed Mg-3Y-2Gd-1Nd-0.4Zr alloy are better than those of commercial WE43 alloy,suggesting that the new developed alloy is a good candidate to fabricate the large complex thin-walled components.
基金National Natural Science Foundation of China(grant numbers 51771045 and U1764254)the Fundamental Research Funds for the Central Universities(grant number N2002016)for the financial supports。
文摘The introduction of biodegradable implant materials has significantly improved the postoperative subjective feelings of patients within the past few decades,among which magnesium alloy is widely considered a favorable choice as its appropriate biodegradability and evident antibacterial activity.Here,we reveal a semisolid rheo-formed Mg–Zn–Sr alloy ureteral implant that displayed suitable degradability and biocompatibility in a pig model.Refined non-dendritic microstructure was observed in the rheo-formed alloy,which led to ca.47%increase in ultimate tensile strength(from 195.0 MPa to 288.1 MPa)and more homogeneous degradation process compared with the untreated alloy.No post-interventional inflammation or pathological changes of the test animals were observed during the implantation period,and the corrosion rate(0.22±0.04 mm·y^(-1))perfectly fitted the clinical ureteral stent indwelling time.The urine bacteria numbers decreased from 88±13 CFU·mL^(-1)at 7 weeks post operation to 59±8 CFU·mL^(-1)at 14 weeks post operation,which confirmed the evident antibacterial activity of the alloy.Our study demonstrates that the Mg–Zn–Sr alloy is clinically safe for urinary system,enabling its efficacious use as ureteral implant materials.
基金financially supported by the Study Abroad Program by the Government of Shandong Province(201802005)Linyi Industrial Technology Research Institute and Shandong Yinguang Yuyuan Light Metal Precise Forming Co.,Ltd。
文摘Microstructural evolution and strengthening mechanisms of Mg-3Sn-1Ca based alloys with additions of different amounts of Al N nanoparticles were investigated.It was found that with increasing the amount of AlN nano-particles the grain size decreases obviously.The existence of AlN nano-particles could refine the primary crystal phases CaMgSn,which provided more heterogeneous nucleation sites for the formation of magnesium.Moreover,such nano-particles could also restrict the grain growth during solidification.After adding AlN nano-particles,both the tensile properties at room temperature and high temperature 250℃and the hardness are largely improved.The improvement of strength is attributed to grain refinement and second phase refinement.
文摘LSD (Lumpy Skin Disease) is a poxviral disease with significant morbidity in cattle and belongs to the family Poxviridae and the genus Capripoxvirus and is transmitted by hematophagous arthropod vectors. Despite the typically low mortality rate, economic costs arise from deterioration in health, decreased milk production, miscarriages, infertility and harmed hides. Brucellosis disease is one of the most common contagious and communicable zoonotic diseases with high rates of morbidity and lifetime sterility. Serological tests with ELISA (Enzyme-Linked Immunosorbent Assays) indicate exposure to Brucella and LSD in cattle. To identify the presence of those diseases, the research was conducted in two provinces, Svay Rieng and Prey Veng, in Cambodia, starting from July 2021 to January 2022. In the study, the 2018 Thusfield method was adopted, and two cattle were selected from 216 households in the two provinces (112 in Svay Rieng and 104 in Prey Veng). However, not all the families had two cattle, so the total sample size was 300 cattle (227 in Svay Rieng and 73 in Prey Veng). As a result, there was only one brucellosis disease case in Svay Rieng Province, while that disease was not found at all in Prey Veng. Meanwhile, LSD was higher in Prey Veng (80% of the tested cattle) than in Svay Rieng (69%). Among all of the tested cattle, 66.7% had the highest BS (Body Score = 4). The finding suggests that LSD was prevalent in the studied areas, which may cause economic losses. Thus, preventive measures should be taken properly to tackle this issue. Although Brucellosis was a rare case in the studied areas, it may spread faster, causing abortion in cattle and women. Biosecurity is needed to ensure a strict control over this disease.
基金the Alexander von Humboldt foundation for the provision of financial support in the form of post-doctoral fellowship
文摘The microstructures of as-cast ZK40,ZK40 with 2%(mass fraction)CaO and ZK40 with 1%(mass fraction)Y were investigated,and the intermetallic phase morphology and the distribution were characterised.By having discrete intermetallic particles at the grain boundaries for the ZK40,the microstructure was modified to a semi-continuous network of intermetallic compounds along the grain boundaries for the ZK40 with CaO or Y additions.The CaO was not found in the microstructure.However,Ca was present in Ca2Mg6Zn3 intermetallic compounds which were formed during casting.Hydrogen evolution and electrochemical impedance spectroscopy tests revealed that the addition of CaO slightly enhanced the corrosion resistance whereas Y had a negative effect on the corrosion resistance of ZK40.Immersion tests showed that severe localised corrosion as well as corrosion along the intermetallic compounds played an important role in the corrosion process of ZK40-Y whereas the localised corrosion was not pronounced for ZK40 or ZK40?CaO alloys.Micro-segregation in theα-Mg matrix was notably higher for the ZK40 alloy compared with the modified alloys.The combination of this effect with a possible formation of a more stable corrosion layer for the ZK40-CaO was attributed as the main reason for an improved corrosion resistance for the ZK40-CaO alloy.
基金sponsored by the China Postdoctoral Science Foundation (Grant No. 2020M673156)Shanghai Pujiang Program (Grant No. 20PJ1404900)。
文摘In this study,the texture evolutions of two Mg materials during tension are explored.In-situ X-ray synchrotron and Visco-Plastic SelfConsistent(VPSC) modeling are employed to investigate the different deformation modes between pure Mg and Mg-15Gd(wt.%) alloy.These two materials with a strong extrusion texture show large different slip/twinning activity behaviors during tensile deformation.The basal(a) slip has the highest contribution to the initial stage of plastic deformation for pure Mg.During the subsequent plastic deformation,the prismatic slip is dominant due to the strong ED//(100) fiber texture.In contrast,the deformation behavior of Mg-15Gd alloy is more complex.Twinning and basal slip are dominant at the early stage of plastic deformation,but further deformation results in the increased activation of prismatic and pyramidal slips.In comparison to pure Mg,the ratios of the critical resolved shear stress(CRSS) between non-basal slip and basal slip of the Mg-15Gd alloy are much lower.
文摘BACKGROUND: The differential diagnosis of many neurodegenerative disorders depends primarily on clinical symptoms together with imaging methods. Recently, increased importance has been placed on the use of biomarkers for diagnosing various neurodegenerative disorders. OBJECTIVE: To assess the feasibility of tau-protein, phosphorylated tau-protein, beta-amyloid 42 (Aβ42), and 14-3-3 protein as biomarkers for diagnosing several neurodegenerative diseases complicated by cognitive deficits. DESIGN, TIME AND SETTING: A non-randomized, concurrent, case-control investigation was performed in three medical centers in the Czech Republic (Department of Neurology at the University Hospital in Hradec Kralove, Department of Neurology at the 2rd Medical Faculty, and the University Hospital Motol) between October 2000 and November 2006. PARTICIPANTS: Eighteen patients with probable AIzheimer's disease, 4 patients with Creutzfeldt-Jakob disease, 10 patients with frontotemporal dementia, 9 patients with clinically isolated syndrome suggestive of multiple sclerosis, and 7 patients with multiple sclerosis, as well as 38 race-, nationality-, and age-matched cognitively intact controls, were included in the study. Diagnoses were established based on the following criteria: the criteria for Alzheimer's disease proposed by the National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer's Disease and Related Disorders Association, WHO criteria for Creutzfeldt-Jakob disease, Neary criteria for frontotemporal dementia, and McDonald's criteria for multiple sclerosis. All included patients were confirmed to suffer from various degrees of dementia. METHODS: Enzyme-linked immunosorbent assay was used to measure concentrations of tau-protein, phosphorylated tau-protein, and Aβ42 in cerebrospinal fluid (CSF) samples collected by standard lumbar puncture from each patient. Moreover, 14-3-3 protein was assessed by Western blot in CSF of Creutzfeldt-Jakob disease patients. Cognitive status