It is shown that on a small (200 km<sup>2</sup>) massif area two extensive groups of metallic (Cr, Ni, Cu, Au, Ag, Pt, Pd, Ru, Os, Ir) and non-metallic (diamond, nephrite, jewelry and ornamental rodingites...It is shown that on a small (200 km<sup>2</sup>) massif area two extensive groups of metallic (Cr, Ni, Cu, Au, Ag, Pt, Pd, Ru, Os, Ir) and non-metallic (diamond, nephrite, jewelry and ornamental rodingites, chrysolite) types of minerals are spatially and genetically combined. They are grouped into 4 ore-forming types of polycomponent ores: diamond-gold-platinum-metal, chromium-nickel-platinum-metal, gold-platinum-metal and chrysolite-nephrite-rodingite. Ore-formational types form a minerogenic series—the product of a single ore-forming system. The paragenetic kinship between diamonds, chrysolite, nephrite, chromite and noble metals has been established. There are main genetic characteristics that ensure the formation uniqueness of the ore-forming system: 1) chariage-thrust control of ore mineralization and multilevel dynamometamorphic ore genesis with a mechanochemical mechanism of mineral formation. Ore-controlling thrusts are structures of shallow dipping that do not cover the entire lithosphere, but only a section of the earth’s crust;2) carbon fluid, mainly of carbonyl form, which has subjected all types of the ophiolite complex rocks of the Ospa-Kitoy node to intensive transformation, has a crustal mechanochemical, not mantle origin;3) a strong paragenetic (“hybrid”) petrological-mineral-geochemical relation occurring between minerals groups of metallic and non-metallic types is a consequence of the participation in the ore genesis processes of a large variety in different material composition of rocks petrotypes, representing a section of the Earth’s crust in the considered part of the East Sayan ophiolite belt.展开更多
It is shown that the ore-forming systems (OFS) of the Vendian-Riphean Greenstone belts (GSB) in the Transbaikalia region were formed in a wide age range: from the Riphean to the Cenozoic. They are grouped into 6 metal...It is shown that the ore-forming systems (OFS) of the Vendian-Riphean Greenstone belts (GSB) in the Transbaikalia region were formed in a wide age range: from the Riphean to the Cenozoic. They are grouped into 6 metallogenic types. The noble metal type is divided into 6 metallogenic subtypes differed in time duration intervals of functioning. OFS evolution wore multistage nature inherited from the composition of the GSB primary rocks, with a tendency of the ore generating processes remobilization and regeneration (dynamometamorphism) changing over time by rejuvenation (shoshonite latite and picrobasalt magmatism, mud volcanism).展开更多
文摘It is shown that on a small (200 km<sup>2</sup>) massif area two extensive groups of metallic (Cr, Ni, Cu, Au, Ag, Pt, Pd, Ru, Os, Ir) and non-metallic (diamond, nephrite, jewelry and ornamental rodingites, chrysolite) types of minerals are spatially and genetically combined. They are grouped into 4 ore-forming types of polycomponent ores: diamond-gold-platinum-metal, chromium-nickel-platinum-metal, gold-platinum-metal and chrysolite-nephrite-rodingite. Ore-formational types form a minerogenic series—the product of a single ore-forming system. The paragenetic kinship between diamonds, chrysolite, nephrite, chromite and noble metals has been established. There are main genetic characteristics that ensure the formation uniqueness of the ore-forming system: 1) chariage-thrust control of ore mineralization and multilevel dynamometamorphic ore genesis with a mechanochemical mechanism of mineral formation. Ore-controlling thrusts are structures of shallow dipping that do not cover the entire lithosphere, but only a section of the earth’s crust;2) carbon fluid, mainly of carbonyl form, which has subjected all types of the ophiolite complex rocks of the Ospa-Kitoy node to intensive transformation, has a crustal mechanochemical, not mantle origin;3) a strong paragenetic (“hybrid”) petrological-mineral-geochemical relation occurring between minerals groups of metallic and non-metallic types is a consequence of the participation in the ore genesis processes of a large variety in different material composition of rocks petrotypes, representing a section of the Earth’s crust in the considered part of the East Sayan ophiolite belt.
文摘It is shown that the ore-forming systems (OFS) of the Vendian-Riphean Greenstone belts (GSB) in the Transbaikalia region were formed in a wide age range: from the Riphean to the Cenozoic. They are grouped into 6 metallogenic types. The noble metal type is divided into 6 metallogenic subtypes differed in time duration intervals of functioning. OFS evolution wore multistage nature inherited from the composition of the GSB primary rocks, with a tendency of the ore generating processes remobilization and regeneration (dynamometamorphism) changing over time by rejuvenation (shoshonite latite and picrobasalt magmatism, mud volcanism).