期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
大牛地气田下石盒子组致密砂岩储层成岩演化 被引量:7
1
作者 苏妮娜 宋璠 +2 位作者 邱隆伟 陈世悦 张娜 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第10期3555-3561,共7页
综合岩石薄片、扫描电镜、阴极发光、流体包裹体及激光拉曼光谱等实验技术,对大牛地气田下石盒子组致密砂岩储层成岩作用类型及特征进行研究,精细刻画成岩作用活动期次,对储层成岩演化过程进行阶段划分,探讨储层致密化过程与烃类流体多... 综合岩石薄片、扫描电镜、阴极发光、流体包裹体及激光拉曼光谱等实验技术,对大牛地气田下石盒子组致密砂岩储层成岩作用类型及特征进行研究,精细刻画成岩作用活动期次,对储层成岩演化过程进行阶段划分,探讨储层致密化过程与烃类流体多期充注的次序关系。研究结果表明:大牛地气田下石盒子组致密砂岩储层以中砂岩为主,岩石类型以岩屑砂岩、岩屑石英砂岩为主;强压实、强硅质胶结、碱性溶解是下石盒子组致密砂岩储层的总体成岩面貌,胶结作用是引起储层致密化的主要原因,可细分出3期硅质胶结与2期钙质胶结;储层的成岩演化过程可依次划分为快速压实、酸碱交替、致密化和致密后4个阶段,储层成岩演化过程中存在3期含烃流体充注,含烃流体充注时间早于储层完全致密化时期,储层总体呈"先成藏—后致密"的特征。 展开更多
关键词 成岩作用 成岩演化 致密砂岩储层 下石盒子组 大牛地气田
下载PDF
Traffic Sign Recognition Based on CNN and Twin Support Vector Machine Hybrid Model
2
作者 Yang Sun longwei chen 《Journal of Applied Mathematics and Physics》 2021年第12期3122-3142,共21页
With the progress of deep learning research, convolutional neural networks have become the most important method in feature extraction. How to effectively classify and recognize the extracted features will directly af... With the progress of deep learning research, convolutional neural networks have become the most important method in feature extraction. How to effectively classify and recognize the extracted features will directly affect the performance of the entire network. Traditional processing methods include classification models such as fully connected network models and support vector machines. In order to solve the problem that the traditional convolutional neural network is prone to over-fitting for the classification of small samples, a CNN-TWSVM hybrid model was proposed by fusing the twin support vector machine (TWSVM) with higher computational efficiency as the CNN classifier, and it was applied to the traffic sign recognition task. In order to improve the generalization ability of the model, the wavelet kernel function is introduced to deal with the nonlinear classification task. The method uses the network initialized from the ImageNet dataset to fine-tune the specific domain and intercept the inner layer of the network to extract the high abstract features of the traffic sign image. Finally, the TWSVM based on wavelet kernel function is used to identify the traffic signs, so as to effectively solve the over-fitting problem of traffic signs classification. On GTSRB and BELGIUMTS datasets, the validity and generalization ability of the improved model is verified by comparing with different kernel functions and different SVM classifiers. 展开更多
关键词 CNN Twin Support Vector Machine Wavelet Kernel Function Traffic Sign Recognition Transfer Learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部