A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical a...A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical and thermo-mechanical properties of the material has been considered. The welding temperature field, the distributions of residual stresses in as-welded (AW) and electron beam local post-weld heat treatment (EBLPWHT) conditions have been successfully simulated. The results show that: (1) In the weld center, the maximum magnitude of residual tensile stresses of BT20 thin plates of Ti alloy is equal to 60%- 70% of its yield strength σs. (2) The residual tensile stresses in weld center can be even decreased after EBLPWHT and the longitudinal tensile stresses are decreased about 50% compared to joints in AW conditions. (3) The numerical calculating results of residual stresses by using FEM are basically in agreement with the experimental results. Combined with numerical calculating results, the effects of electron beam welding and EBLPWHT on the distribution of welding residual stresses in thin plates of BT20 have been analyzed in detail.展开更多
The relationship between Charpy absorbed energy and the fracture toughness by means of the (crack tip opening displacement (CTOD)) method was analyzed based on the Weibull stress criterion. The Charpy absorbed energy ...The relationship between Charpy absorbed energy and the fracture toughness by means of the (crack tip opening displacement (CTOD)) method was analyzed based on the Weibull stress criterion. The Charpy absorbed energy and the fracture toughness were measured for the SN490B steel under the ductile-brittle transition temperature region. For the instrumented Charpy impact test, the curves between the loading point displacement and the load against time were recorded. The critical Weibull stress was taken as a fracture controlled parameter, and it could not be affected by the specimen configuration and the loading pattern based on the local approach. The parameters controlled brittle fracture are obtained from the Charpy absorbed energy results, then the fracture toughness for the compact tension (CT) specimen is predicted. It is found that the results predicted are in good agreement with the experimental. The fracture toughness could be evaluated by the Charpy absorbed energy, because the local approach gives a good description for the brittle fracture even though the Charpy impact specimen or the CT specimen is used for the given material.展开更多
On the basis of the thermal-elastic-plastic theory, a three-dimensional finite element numerical simulation is performed on the girth welded residual stresses of the duplex stainless steel pipe with ANSYS nonlinear fi...On the basis of the thermal-elastic-plastic theory, a three-dimensional finite element numerical simulation is performed on the girth welded residual stresses of the duplex stainless steel pipe with ANSYS nonlinear finite element program for the first time. Three-dimensional FEM using mobile heat source for analysis transient temperature field and welding stress field in circumferential joint of pipes is founded. Distributions of axial and hoop residual stresses of the joint are investigated. The axial and the hoop residual stresses at the weld and weld vicinity on inner surface of pipes are tensile, and they are gradually transferred into compressive with the increase of the departure from the weld. The axial residual stresses at the weld and weld vicinity on outer surface of pipes is compressive while the hoop one is tensile. The distributions of residual stresses compared positive-circle with negative-circle show distinct symmetry. These results provide theoretical knowledge for the optimization of process and the control of welding residual stresses.展开更多
The electron beam local post-weld heat treatment (EBLPWHT) is a rather new method that provides the advantages of high precision, flexibility and efficiency, energy saving and higher productivity. This paper studies t...The electron beam local post-weld heat treatment (EBLPWHT) is a rather new method that provides the advantages of high precision, flexibility and efficiency, energy saving and higher productivity. This paper studies the effect of two post-weld heat treatment processes on the microstructure, mechanical properties and fracture toughness of an electron beam welded joints in 30CrMnSiNi2A steel. EBLPWHT, in a vacuum chamber, immediately after welding and a traditional furnace whole post-weld heat treatment (FWPWHT) were compared. The experimental results show that, after EBLPWHT treatment, the main microstructure of weld was changed from coarse acicular martensite into lath martensite, HAZ was changed from lath martensite, bainite into lower bainite, and base metal was changed from ferrite and pearlite into upper bainite and residual austenite. The microstructures of different zones of joints in FWPWHT condition were tempered sorbite. The properties of welded joints can be improved by the EBLPWHT in some extent, and especially largely for the fracture toughness of welded joints. However the value of fracture toughness of base metal is comparatively low, so appropriate heat treatment parameters should be explored in the future.展开更多
文摘A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical and thermo-mechanical properties of the material has been considered. The welding temperature field, the distributions of residual stresses in as-welded (AW) and electron beam local post-weld heat treatment (EBLPWHT) conditions have been successfully simulated. The results show that: (1) In the weld center, the maximum magnitude of residual tensile stresses of BT20 thin plates of Ti alloy is equal to 60%- 70% of its yield strength σs. (2) The residual tensile stresses in weld center can be even decreased after EBLPWHT and the longitudinal tensile stresses are decreased about 50% compared to joints in AW conditions. (3) The numerical calculating results of residual stresses by using FEM are basically in agreement with the experimental results. Combined with numerical calculating results, the effects of electron beam welding and EBLPWHT on the distribution of welding residual stresses in thin plates of BT20 have been analyzed in detail.
基金The work is supported by the National Natural Science Foundation of China under grant No.50275107by Fok Ying Tung Education Foundation under grant No.81405.
文摘The relationship between Charpy absorbed energy and the fracture toughness by means of the (crack tip opening displacement (CTOD)) method was analyzed based on the Weibull stress criterion. The Charpy absorbed energy and the fracture toughness were measured for the SN490B steel under the ductile-brittle transition temperature region. For the instrumented Charpy impact test, the curves between the loading point displacement and the load against time were recorded. The critical Weibull stress was taken as a fracture controlled parameter, and it could not be affected by the specimen configuration and the loading pattern based on the local approach. The parameters controlled brittle fracture are obtained from the Charpy absorbed energy results, then the fracture toughness for the compact tension (CT) specimen is predicted. It is found that the results predicted are in good agreement with the experimental. The fracture toughness could be evaluated by the Charpy absorbed energy, because the local approach gives a good description for the brittle fracture even though the Charpy impact specimen or the CT specimen is used for the given material.
文摘On the basis of the thermal-elastic-plastic theory, a three-dimensional finite element numerical simulation is performed on the girth welded residual stresses of the duplex stainless steel pipe with ANSYS nonlinear finite element program for the first time. Three-dimensional FEM using mobile heat source for analysis transient temperature field and welding stress field in circumferential joint of pipes is founded. Distributions of axial and hoop residual stresses of the joint are investigated. The axial and the hoop residual stresses at the weld and weld vicinity on inner surface of pipes are tensile, and they are gradually transferred into compressive with the increase of the departure from the weld. The axial residual stresses at the weld and weld vicinity on outer surface of pipes is compressive while the hoop one is tensile. The distributions of residual stresses compared positive-circle with negative-circle show distinct symmetry. These results provide theoretical knowledge for the optimization of process and the control of welding residual stresses.
文摘The electron beam local post-weld heat treatment (EBLPWHT) is a rather new method that provides the advantages of high precision, flexibility and efficiency, energy saving and higher productivity. This paper studies the effect of two post-weld heat treatment processes on the microstructure, mechanical properties and fracture toughness of an electron beam welded joints in 30CrMnSiNi2A steel. EBLPWHT, in a vacuum chamber, immediately after welding and a traditional furnace whole post-weld heat treatment (FWPWHT) were compared. The experimental results show that, after EBLPWHT treatment, the main microstructure of weld was changed from coarse acicular martensite into lath martensite, HAZ was changed from lath martensite, bainite into lower bainite, and base metal was changed from ferrite and pearlite into upper bainite and residual austenite. The microstructures of different zones of joints in FWPWHT condition were tempered sorbite. The properties of welded joints can be improved by the EBLPWHT in some extent, and especially largely for the fracture toughness of welded joints. However the value of fracture toughness of base metal is comparatively low, so appropriate heat treatment parameters should be explored in the future.