A p-Laplacian ( p > 2 ) reaction-diffusion system on weighted graphs is introduced to a networked SIR epidemic model. After overcoming difficulties caused by the nonlinear p-Laplacian, we show that the endemic equi...A p-Laplacian ( p > 2 ) reaction-diffusion system on weighted graphs is introduced to a networked SIR epidemic model. After overcoming difficulties caused by the nonlinear p-Laplacian, we show that the endemic equilibrium is globally asymptotically stable if the basic reproduction number r<sub>0</sub> is greater than 1, while the disease-free equilibrium is globally asymptotically stable if r<sub>0</sub> is lower than 1. We extend the stability results of SIR models with graph Laplacian ( p = 2 ) to general graph p-Laplacian.展开更多
文摘A p-Laplacian ( p > 2 ) reaction-diffusion system on weighted graphs is introduced to a networked SIR epidemic model. After overcoming difficulties caused by the nonlinear p-Laplacian, we show that the endemic equilibrium is globally asymptotically stable if the basic reproduction number r<sub>0</sub> is greater than 1, while the disease-free equilibrium is globally asymptotically stable if r<sub>0</sub> is lower than 1. We extend the stability results of SIR models with graph Laplacian ( p = 2 ) to general graph p-Laplacian.