期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于数据深度增强的路面病害智能检测方法研究及比较
被引量:
9
1
作者
侯越
张慧婷
+5 位作者
高智伟
王大为
刘鹏飞
Markus
OESER
linbing
wang
陈宁
《北京工业大学学报》
CAS
CSCD
北大核心
2022年第6期622-634,共13页
针对路面病害人工检测方法的耗时问题和路面病害自动检测方法的检测精度问题(由于样本数据集不均衡导致),采用一种数据深度增强方法,对车载智能手机拍摄的高清路面图片数据集进行增强处理,并测试评估该数据增强方法对2种不同类型目标检...
针对路面病害人工检测方法的耗时问题和路面病害自动检测方法的检测精度问题(由于样本数据集不均衡导致),采用一种数据深度增强方法,对车载智能手机拍摄的高清路面图片数据集进行增强处理,并测试评估该数据增强方法对2种不同类型目标检测算法的提升效果.首先,鉴于实验条件及采集环境的限制,作者采用一种WGAN-GP与泊松迁移算法相融合的数据深度增强方法,通过生成不同遮挡物、不同光线条件下的道路坑槽图片,补充并均衡训练样本数据;然后,引入Faster R-CNN和基于Yolo算法的多种目标检测算法变体(Yolov5s、Yolov5m、Yolov5l、Yolov5x),通过实验比对应用数据深度增强方法后各种目标检测算法的识别精度和效率.在日本公开道路检测数据集上的实验结果显示,使用数据深度增强方法后,5种检测算法的P指标、R指标及F1指标平均提升度分别为2.8%、4.0%及3.6%;5种检测算法中,Yolov5l取得最高的F1数值,达到60.9%,若条件适宜,如在背景光线适中的测试集上,Yolov5l算法的F1数值可以达到68.7%,取得较好的效果.
展开更多
关键词
道路工程
路面病害
深度学习
卷积神经网络
数据增强
目标检测
下载PDF
职称材料
题名
基于数据深度增强的路面病害智能检测方法研究及比较
被引量:
9
1
作者
侯越
张慧婷
高智伟
王大为
刘鹏飞
Markus
OESER
linbing
wang
陈宁
机构
北京工业大学城市建设学部
格拉斯哥大学詹姆斯瓦特工程学院
德国亚琛大学道路工程研究所
德国联邦交通部公路研究院
弗吉尼亚理工大学土木与环境工程系
丰田都市交通研究所
出处
《北京工业大学学报》
CAS
CSCD
北大核心
2022年第6期622-634,共13页
基金
国家自然科学基金资助项目(51708026)。
文摘
针对路面病害人工检测方法的耗时问题和路面病害自动检测方法的检测精度问题(由于样本数据集不均衡导致),采用一种数据深度增强方法,对车载智能手机拍摄的高清路面图片数据集进行增强处理,并测试评估该数据增强方法对2种不同类型目标检测算法的提升效果.首先,鉴于实验条件及采集环境的限制,作者采用一种WGAN-GP与泊松迁移算法相融合的数据深度增强方法,通过生成不同遮挡物、不同光线条件下的道路坑槽图片,补充并均衡训练样本数据;然后,引入Faster R-CNN和基于Yolo算法的多种目标检测算法变体(Yolov5s、Yolov5m、Yolov5l、Yolov5x),通过实验比对应用数据深度增强方法后各种目标检测算法的识别精度和效率.在日本公开道路检测数据集上的实验结果显示,使用数据深度增强方法后,5种检测算法的P指标、R指标及F1指标平均提升度分别为2.8%、4.0%及3.6%;5种检测算法中,Yolov5l取得最高的F1数值,达到60.9%,若条件适宜,如在背景光线适中的测试集上,Yolov5l算法的F1数值可以达到68.7%,取得较好的效果.
关键词
道路工程
路面病害
深度学习
卷积神经网络
数据增强
目标检测
Keywords
road engineering
pavement distress
deep learning
convolutional neural network
data augmentation
target detection
分类号
U418.6 [交通运输工程—道路与铁道工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于数据深度增强的路面病害智能检测方法研究及比较
侯越
张慧婷
高智伟
王大为
刘鹏飞
Markus
OESER
linbing
wang
陈宁
《北京工业大学学报》
CAS
CSCD
北大核心
2022
9
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部