This study considers a delayed biological system of predator-prey interactions where the predator has stage-structured preference. It is assumed that the prey population has two stages: immature and mature. The predat...This study considers a delayed biological system of predator-prey interactions where the predator has stage-structured preference. It is assumed that the prey population has two stages: immature and mature. The predator population has different preference for the stage-structured prey. This type of behavior has been reported in Asecodes hispinarum and Microplitis mediator. By some lemmas and methods of delay differential equation, the conditions for the permanence, existence of positive periodic solution and extinction of the system are obtained. Numerical simulations are presented that illustrate the analytical results as well as demonstrate certain biological phenomena. In particular, overcrowding of the predator does not affect the persistence of the system, but our numerical simulations suggest that overcrowding reduces the density of the predator. Under the assumption that immature prey is easier to capture, our simulations suggest that the predator’s preference for immature prey increases the predator density.展开更多
New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous differ...New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous difference equations relies on the existence of a positive definite Liapunov function that has an indefinitely small upper bound and whose variation along a given nonautonomous difference equations is negative definite. In this paper, we consider the case that the Liapunov function is only positive definite and its variation is semi-negative definite. At these weaker conditions, we put forward a new asymptotical stability theorem of nonautonomous difference equations by adding to extra conditions on the variation. After that, in addition to the hypotheses of our new asymptotical stability theorem, we obtain a new uniformly asymptotical stability theorem of nonautonomous difference equations provided that the Liapunov function has an indefinitely small upper bound. Example is given to verify our results in the last.展开更多
A delayed biological system of predator-prey interaction with stage structure and density dependent juvenile birth rate is investigated. It is assumed that the prey population has two stages: immature and mature. The ...A delayed biological system of predator-prey interaction with stage structure and density dependent juvenile birth rate is investigated. It is assumed that the prey population has two stages: immature and mature. The growth of the immature prey is density dependent and is a function of the density of adult prey. Such phenomenon has been reported for beetles, tribolium, copepods, scorpions, several fish species and even crows. The growth of the predator is affected by the time delay due to gestation. By some Lemmas and methods of delay differential equation, the conditions for the uniform persistence and extinction of the system are obtained. Numerical simulations illustrate the feasibility of the main results and demonstrate that the density dependent coefficient has influence on the system populations’ densities though it has no effect on uniform persistence and extinction of the system.展开更多
文摘This study considers a delayed biological system of predator-prey interactions where the predator has stage-structured preference. It is assumed that the prey population has two stages: immature and mature. The predator population has different preference for the stage-structured prey. This type of behavior has been reported in Asecodes hispinarum and Microplitis mediator. By some lemmas and methods of delay differential equation, the conditions for the permanence, existence of positive periodic solution and extinction of the system are obtained. Numerical simulations are presented that illustrate the analytical results as well as demonstrate certain biological phenomena. In particular, overcrowding of the predator does not affect the persistence of the system, but our numerical simulations suggest that overcrowding reduces the density of the predator. Under the assumption that immature prey is easier to capture, our simulations suggest that the predator’s preference for immature prey increases the predator density.
文摘New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous difference equations relies on the existence of a positive definite Liapunov function that has an indefinitely small upper bound and whose variation along a given nonautonomous difference equations is negative definite. In this paper, we consider the case that the Liapunov function is only positive definite and its variation is semi-negative definite. At these weaker conditions, we put forward a new asymptotical stability theorem of nonautonomous difference equations by adding to extra conditions on the variation. After that, in addition to the hypotheses of our new asymptotical stability theorem, we obtain a new uniformly asymptotical stability theorem of nonautonomous difference equations provided that the Liapunov function has an indefinitely small upper bound. Example is given to verify our results in the last.
文摘A delayed biological system of predator-prey interaction with stage structure and density dependent juvenile birth rate is investigated. It is assumed that the prey population has two stages: immature and mature. The growth of the immature prey is density dependent and is a function of the density of adult prey. Such phenomenon has been reported for beetles, tribolium, copepods, scorpions, several fish species and even crows. The growth of the predator is affected by the time delay due to gestation. By some Lemmas and methods of delay differential equation, the conditions for the uniform persistence and extinction of the system are obtained. Numerical simulations illustrate the feasibility of the main results and demonstrate that the density dependent coefficient has influence on the system populations’ densities though it has no effect on uniform persistence and extinction of the system.